首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   125篇
  免费   22篇
  国内免费   17篇
测绘学   1篇
大气科学   8篇
地球物理   24篇
地质学   111篇
海洋学   3篇
天文学   2篇
综合类   4篇
自然地理   11篇
  2023年   1篇
  2022年   1篇
  2021年   3篇
  2020年   2篇
  2019年   5篇
  2018年   3篇
  2016年   3篇
  2015年   7篇
  2014年   10篇
  2013年   14篇
  2012年   6篇
  2011年   5篇
  2010年   3篇
  2009年   11篇
  2008年   8篇
  2007年   9篇
  2006年   7篇
  2005年   7篇
  2004年   3篇
  2003年   4篇
  2002年   2篇
  2001年   3篇
  2000年   3篇
  1999年   5篇
  1998年   8篇
  1997年   7篇
  1996年   4篇
  1995年   4篇
  1993年   4篇
  1992年   4篇
  1991年   2篇
  1990年   3篇
  1989年   2篇
  1987年   1篇
排序方式: 共有164条查询结果,搜索用时 18 毫秒
1.
利用断层相关褶皱的构造几何分析方法,对准噶尔盆地南缘山前复杂构造带内基于地震剖面进行了构造解析,搭建了中、东段的构造轮廓和构造组合样式,认为东段阜康断裂带主要表现为至地表的推覆逆掩。由于位移量大部分转移至地表,阜康断裂带的前陆部分无喜山期构造带;西段造山带内的挤压往前陆方向传递过程中以前列式不断释放其位移量,造成在纵向上呈现三排主要的断层相关褶皱带。根据正演平衡地质剖面制作技术对山前复杂构造区地震剖面反射波的构造识别进行了模拟与探讨。  相似文献   
2.
Large-scale ancient landslides of the area of more than 5 km2 and volume exceeding 200 × 106 m3 are characteristic features of the valleys incised in the northern periphery of the Crimean Mountains (Ukraine). The largely affected area is located in the outermost cuesta range of the Crimean Mountains which consists of rigid Sarmatian limestones overlying weak Middle Miocene and Upper Palaeogene deposits. A giant landslide arose in the Alma water gap as a reflection of several coincident preparatory factors such as suitable bedrock stratification, smectite-rich bedrock exposed to swelling activity, presence of faults parallel to the valley trend, and river capture event which preceded the landslide event. The occurrence of such ancient megaslides is particularly interesting in the area which is characterized by low precipitation (<500 mm/year) and weak contemporary seismicity. It probably reflects a more dynamic environment in humid phases of the Holocene; however, seismic triggering along the Mesozoic suture zone cannot be rejected. Compressional features such as gravitational folds in the central and distal parts of the landslide, which probably correlate with the whole landslide genesis or its significant reactivation, arose, according to the radiocarbon dating, during the Holocene climatic optimum in the Atlantic period. The slope deformation has been relatively quiescent since that time, except minor historic reactivization which took place in the frontal part of the landslide. We suppose that the studied landslide could be classified as a transitional type of slope deformation with some signs of spreading and translational block slides.  相似文献   
3.
The analysis of paleomagnetic data available for the southern Primiorye region revealed that the studied objects were magnetized under regional remagnetization presumably during the Late Mesozoic folding and this magnetization can be interpreted as being synfolding. The interpretation is based on the parameter that characterizes the folding completion degree immediately before regional remagnetization. It is shown that the relaxation of Late Mesozoic horizontal stresses was irregular. The obtained estimates of the degree of folding completion are consistent with the available geological data and Talitskii’s model for tectonic deformations.  相似文献   
4.
5.
The Wadi Hafafit Complex (WHC) is an arcuate belt of orthogneisses, migmatites and other high-grade metamorphic rocks, which marks the boundary between the Central Eastern and the South Eastern Deserts of Egypt. In the WHC, gneissic meta-gabbro outlines macroscopic fold interference patterns characterized by elliptical to irregular culminations cored by gneissic meta-tonalite to meta-trondhjemite. The five main culminations of the WHC have previously been labeled A (most northerly), B, C, D and E (most southerly). A detailed structural investigation of B, C, D and E reveals that these structures are a result of the interference of four macroscopic fold phases, the first three of which may represent a single deformation event. The first folding involved sheath-like fold nappes, which were transported to the N or NW, assisted by translation on gently dipping mylonite zones. The regional gneissosity and mineral extension lineations formed during this folding event. The fold nappes were deformed by mainly open upright small macroscopic and mesocopic folds with approximately NE-trending hinges. As a probable continuation of the latter folding, the sheaths were buckled into large macroscopic folds and monoclines with the same NE-trends. The fourth macroscopic folding resulted from shortening along the NE–SW direction, producing mainly NW–SE-trending upright gently plunging folds. Gravitative uplift is disputed as a component of the deformation history of the WHC. The peculiarities of the fold interference pattern result from the interesting behaviour of sheath folds during their refolding.  相似文献   
6.
The inference of fault geometry from suprajacent fold shape relies on consistent and verified forward models of fault-cored folds, e.g. suites of models with differing fault boundary conditions demonstrate the range of possible folding. Results of kinematic (fault-parallel flow) and mechanical (boundary element method) models are compared to ascertain differences in the way the two methods simulate flexure associated with slip along flat-ramp-flat geometry. These differences are assessed by systematically altering fault parameters in each model and observing subsequent changes in the suprajacent fold shapes. Differences between the kinematic and mechanical fault-fold relationships highlight the differences between the methods. Additionally, a laboratory fold is simulated to determine which method might best predict fault parameters from fold shape. Although kinematic folds do not fully capture the three-dimensional nature of geologic folds, mechanical models have non-unique fold-fault relationships. Predicting fault geometry from fold shape is best accomplished by a combination of the two methods.  相似文献   
7.
The Mellish Park Syncline is located in the northern part of the Mt Isa terrane. It has an axial trace that transects the remnants of the unconformity‐bounded Palaeoproterozoic Leichhardt and Isa Superbasins. The syncline is separated into a lower and upper component based upon variation in fold geometry across the basin‐bounding unconformity. The lower syncline, in the Leichhardt Superbasin, is tight and has an inclined west‐dipping axial plane. The upper syncline, in the Isa Superbasin, is open and upright. The geometry of the lower syncline is a consequence of a period of shortening and basin inversion which post‐dated the Leichhardt Rift Event (ca 1780–1740 Ma) and pre‐dated the Mt Isa Rift Event (ca 1710–1655 Ma), forming an open and upright north‐oriented syncline. Subsequent southeast tilting and half‐graben development during the Mt Isa Rift Event resulted in the lower syncline being tilted into its inclined geometry. Sequences of the Isa Superbasin were then deposited onto the eroded syncline. The geometry of the upper syncline reflects regional east‐west shortening during the Isan Orogeny (ca 1590–1500 Ma). The position of the upper syncline was largely controlled by the pre‐existing lower syncline. At this time the lower syncline was reactivated and tightened by flexural slip folding.  相似文献   
8.
A series of nearly daily ozone vertical profiles obtained at station T-3 on Fletcher's Ice Island (85°N, 90°W) during the period January-March 1971 shows several significant ozone intrusions into the troposphere. These intrusions are not only associated with enhanced ozone amounts in the stratosphere but also require tropopause folding events to transport ozone into the troposphere. These folds in the Arctic tropopause appear to be capable of contributing significantly to the ozone budget of the Arctic troposphere during the late winter and spring seasons. The importance of tropopause folding for bringing ozone into the troposphere seen in the daily ozone profiles confirms the results found in the Arctic Gas and Aerosol Sampling Program aircraft flights.  相似文献   
9.
10.
The lead-zinc bearing Proterozoic rocks of Zawar, Rajasthan, show classic development of small-scale structures resulting from superposed folding and ductile shearing. The most penetrative deformation structure noted in the rocks is a schistosity (S 1) axial planar to a phase of isoclinal folding (F 1). The lineations which parallel the hinges ofF 1 folds are deformed by a set of folds (F 2) having vertical or very steep axial planes. At many places a crenulation cleavage (S 2) has developed subparallel to the axial planes ofF 2 folds, particularly in the psammopelitic rocks. The plunge and trend ofF 2 folds vary widely over the area. Deformation ofF 2 folds into hook-shaped geometry and development of another set of axial planar crenulation cleavage are the main imprints of the third generation folds (F 3) in the region. In addition to these, there are at least two other sets of cleavage planes with corresponding folds in small scales. More common among these is a set of recumbent and reclined folds (F 4), developed on steeply dipping early-formed planes. Kink bands and associated sharp-hinged folds represent the other set (F 5). Two major refolded folds are recognizable in the map pattern of the Zawar mineralised belt. The larger of the two, the Main Zawar Fold (MZF), shows a broad hook-shaped geometry. The other large-scale structure is the Zawarmala fold, lying south-west of the MZF. Both the major structures show truncation of lithological units along their respective east ‘limbs’, and extreme variation in the width of formations. The MZF is primarily the result of superimposition ofF 3 onF 2.F 1 folds are relatively smaller in scale and are recognizable in the quartzite unit which responded to deformation mainly by buckle shortening. Large-scale pinching-and-swelling that appears in the outcrop pattern seems to be a pre-F2 feature. The structural evolutionary model worked out to explain the chronology of the deformational features and the large-scale out-crop pattern envisages extreme east-west shortening following formation ofF 1 structures, resulting in the formation of tight and isoclinal antiforms (F 2) with pinched-in synforms in between. These latter zones evolved into a number of ductile shear zones (DSZs). The east-west refolding of the large-scaleF 2 isoclinal antiforms seems to be the consequence of a continuous deformation and resultant migration of folds along the DSZs. The main shear zone which wraps the Zawar folds followed a curved path. Because of the penetrative nature of theF 2 movement, the early lineations which were at high angles to the later ones (as is evident in the west of Zawarmala), became subparallel to the trend ofF 2 folding over a large part of the area. Further, the virtually coaxial nature ofF 2 andF 3 folds and the refolding ofF 3 folds by a new set of N-S folds is an indication of continuous progressive deformation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号