首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Paleomagnetism of Late Paleozoic,Mesozoic, and Cenozoic rocks in Mongolia
Authors:DV Kovalenko
Institution:Institute of Geology of Mineral Deposits, Petrography, Mineralogy, and Geochemistry, Russian Academy of Sciences, 35 Staromonetnyi per., Moscow, 119017, Russia
Abstract:Rock complexes in Mongolia experienced two remagnetization events. Almost all secondary remanence components of normal polarity were acquired apparently in the Cenozoic, after major deformation events, and those of reverse polarity were associated with intrusion of bimodal magmas during the Late Carboniferous–Permian reverse superchron. Active continental-margin sequences in some areas of Mongolia were folded prior to the Late Carboniferous–Permian magnetic event. The primary origin of magnetization in Late Paleozoic and Mesozoic rocks has been inferred to different degrees of reliability. According to paleolatitudes derived from most reliable paleomagnetic data, the analyzed rocks were located far north of the North China block throughout the Late Paleozoic and Early Mesozoic. Mongolia, as well as Siberia, moved from the south to the north in the Paleozoic, back from the north to the south between the latest Triassic and the latest Jurassic, and remained almost within the same latitudes in Cretaceous and Cenozoic time. These paleolatitudes show no statistical difference from those for the Siberian craton at least since the latest Permian (275–250 Ma). Older Mongolian complexes (with ages of 290, 316, and 330 Ma) likewise may have formed within the Siberian continent, which makes their paleomagnetic determinations applicable to calculate the polar wander path for Siberia. The paleolatitudes of Early Carboniferous sediments in Mongolia differ significantly from those of Siberia, either because of overprints from the reverse superchron or because they were deposited away from the Siberian margin.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号