首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Spatial and Temporal Scales of Coronal Magnetic Restructuring in the Development of Coronal Mass Ejections
Authors:Yayuan Wen  Jingxiu Wang  Dalmiro Jorge Filipe Maia  Yuzong Zhang  Hui Zhao  Guiping Zhou
Institution:(1) National Astronomical Observatories, Chinese Academy of Sciences, Beijing, 100012, P.R. China;(2) CICGE, Observatório Astronómico Professor Manuel de Barros, Faculdade de Ciências da Universidade do Porto, 4430-146 Vila Nova de Gaia, Portugal
Abstract:It has been commonly accepted that coronal mass ejections (CMEs) result from the restructuring or reconfiguring of large-scale coronal magnetic fields. In this paper, we analyzed four CME events using Nançay Radioheliograph (NRH) images and the experiments onboard the Solar and Heliospheric Observatory (SOHO) spacecraft to understand the coronal restructuring leading to CME initiation. We investigated the onset, duration, and position of the radio emissions in relation to EUV dimming and the inferred CME onset. It has been identified that the early CME development on the solar disk is characterized by a series of distinct radio bursts. These nonthermal radio sources appeared in phase with coronal dimming shown by SOHO-EIT images and are located within the EUV dimming or ongoing dimming regions. Three time scales are identified: the duration, the separation of individual radio bursts, and the overall time scale of all of the nonthermal sources. They fall in the ranges of approximately tens of seconds to three minutes, one to three minutes, and 15 – 20 minutes, respectively. The individual radio emission seems to shift and expand at the speed of the fast magnetoacoustic waves in the corona; while the nonthermal radio emissions as a whole appear episodically to correspond to the successive coronal restructuring. If we define the triggering speed by dividing the overall spatial scale by the temporal scale of all the radio bursts, then the triggering speed falls in the range of 300 – 400 km s?1. This implies that the general process of coronal restructuring and reconfiguring takes place at a speed slower than either the Alvfenic or acoustic speed in the corona. This is a type of speed of “topology waves,” i.e., the speed of successive topology changes from closed to open field configuration.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号