首页 | 本学科首页   官方微博 | 高级检索  
     检索      

土岩组合岩体中抗拔桩极限承载力的确定
引用本文:穆锐,浦少云,黄质宏,李永辉,郑培鑫,刘旸,刘泽,郑红超.土岩组合岩体中抗拔桩极限承载力的确定[J].岩土力学,2019,40(7):2825-2837.
作者姓名:穆锐  浦少云  黄质宏  李永辉  郑培鑫  刘旸  刘泽  郑红超
作者单位:1. 贵州大学 土木工程学院,贵州 贵阳 550025;2. 东南大学 交通学院,江苏 南京 211189;3. 东南大学 岩土工程研究所,江苏 南京 211189;4. 大连理工大学 海岸和近海工程国家重点实验室,辽宁 大连 116024;5. 华南理工大学 土木与交通学院,广东 广州 510641; 6. 中南大学 土木工程学院,湖南 长沙 410075;7. 米易县交通运输局,四川 攀枝花 617200
基金项目:贵州省土木工程一流学科建设项目(No. QYNYL〔2017〕0013);国家自然科学基金资助项目(No. 51168009)。
摘    要:为全面探究土岩组合岩体中抗拔桩的极限承载力,结合工程岩土参数及试验数据,运用Flac3D数值分析软件对其进行数值模拟分析,即可得到土岩组合岩体中抗拔桩的极限承载力。基于被动状态下的Kotter极限平衡方程式求解土层提供的抗拔力,根据岩石强度,基于Hoek-Brown破坏准则求解抗拔桩嵌岩端岩体的抗拉强度,从而可计算得到嵌岩端岩体的抗拔力;由静力平衡原理,叠加土层及嵌岩端岩体提供的抗拔力及破坏锥体重量,即可得到土岩组合岩体中嵌岩抗拔桩的极限承载力理论解析式。在嵌岩深度较小的情况下,该解析式的理论计算值与数值模拟分析值相接近,但随着嵌岩深度的增加,理论计算值会偏离数值计算值。故结合数值模拟试验值,对提出的极限承载力理论解析式作进一步的修正,得到修正后的极限承载力解析式能反映嵌岩端岩石风化程度、嵌岩深度、土层厚度、桩长对极限承载力的影响。运用修正后的解析式对该地质条件下不同抗拔桩的极限承载力计算表明:数值模拟结果与理论计算结果相吻合,说明所建立的抗拔桩极限承载力解析式的方法是可行的。同时,运用该方法可确定类似工程中嵌岩抗拔桩的极限承载力。

关 键 词:桩基工程  抗拔桩  Kotter方程  Hoek-Brown准则  Flac3D数值模拟  极限承载力  
收稿时间:2018-04-02

Determination of ultimate bearing capacity of uplift piles in combined soil and rock masses
MU Rui,PU Shao-yun,HUANG Zhi-hong,LI Yong-hui,ZHENG Pei-xin,LIU Yang,LIU Ze,ZHENG Hong-chao.Determination of ultimate bearing capacity of uplift piles in combined soil and rock masses[J].Rock and Soil Mechanics,2019,40(7):2825-2837.
Authors:MU Rui  PU Shao-yun  HUANG Zhi-hong  LI Yong-hui  ZHENG Pei-xin  LIU Yang  LIU Ze  ZHENG Hong-chao
Abstract:In order to comprehensively explore the ultimate bearing capacity of uplift piles in combined soil and rock masses, combined with engineering geotechnical parameters and experimental data, the Flac3D numerical analysis software is adopted to carry out numerical simulation analysis to obtain the ultimate bearing capacity of uplift piles in the composite rock mass. The Kotter limit equilibrium passive equation is employed to solve the pull-out force provided by the soil layer. And based on the rock strength, the strength of the rock mass embedded in the rock pile can be determined by the Hoek-Brown failure criterion. In turn, the pull-out force of the rock mass embedded in the rock can also be obtained. In addtion, based on the principle of force balance, the ultimate bearing capacity of rock in lay uplift piles in the combined rock mass can be obtained by superimposing the pull-out resistance provided by failure rock layer and the rock mass on the gravity of failure cone. The theoretical calculation value obtained from the analytical formula is close to the numerical simulation analysis value in the case of small rock-socketed depth. However, with the increase of the rock-socketed depth, the theoretical calculation value fluctuates within a certain range around the experimental value. Therefore, combining with the numerical results, the theoretical formula of the ultimate bearing capacity is modified. Finally, by taking the consideration of the effect of rock wathering, rock-sockering depth, soil thickness and pile length, the improved ultimate bearing capacity analytical formula is obtained. The modified analytical formula is used to predict the ultimate bearing capacity of different uplift piles under different geological conditions. The predicted results show that the numerical simulation results are consistent with the theoretical calculation results, which means the analytical method of the ultimate bearing capacity of uplift piles in this paper is feasible. Based on a part of test result, the ultimate bearing capacity of different rock-socked piles with different rock-socked depths in similar projects can be determined by this method.
Keywords:pile foundation engineering  uplift piles  Kotter equation  Hoek-Brown criterion  Flac3D numerical simulation  ultimate bearing capacity  
本文献已被 CNKI 等数据库收录!
点击此处可从《岩土力学》浏览原始摘要信息
点击此处可从《岩土力学》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号