首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Numerical simulation of the nonlinear wave-induced dynamic response of anisotropic poro-elastoplastic seabed
Authors:Wei-Yun Chen  Guo-Xing Chen  Chen-Cong Liao  Hong-Mei Gao
Institution:1. Institute of Geotechnical Engineering, Nanjing Tech University, Nanjing, China;2. Department of Civil Engineering, Shanghai Jiao Tong University, Shanghai, China
Abstract:Abstract

In this paper, a 2D poro-elastoplastic model for wave-induced dynamic response in an anisotropic seabed is derived analytically. The seabed is treated as a porous medium and characterized by Biot’s consolidation equations. The soil plasticity and wave non-linearity are included in the model and both the pore fluid and the soil skeleton are assumed to be compressible. The nonlinear ocean waves are respectively considered as progressive and standing waves. The previous experimental data is used to validate the proposed model. Numerical results demonstrate that the influence of nonlinear wave components should not be ignored without committing substantial error. A significant difference between progressive and standing waves is also observed for the development of residual pore pressure, as well as the distribution of liquefied zone. A detailed parametric investigation reveals that the nonlinear wave-induced seabed response is also affected significantly by cross-anisotropic soil parameters.
Keywords:Dynamic response  anisotropic soils  porous seabed  nonlinear wave  residual liquefaction
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号