首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Thermodynamics of water in cordierite and some petrologic consequences of cordierite as a hydrous phase
Authors:R C Newton  B J Wood
Institution:(1) Department of Geology, University of the Western Cape, Bellville, South Africa;(2) Department of Geochemistry, University of Cape Town, Rondebosch, South Africa
Abstract:Olivine melilitites from Namaqualand, South Africa are characterized by a broad range in olivine compositions on the scale of individual hand specimens. It is possible to distinguish four petrographically and chemically distinct olivine populations in both the northern and southern pipe clusters studied: (a) Scarce anhedral or subhedral olivines that display marked disequilibrium features with the surrounding matrix, and which are characterized by having high iron and extremely low nickel contents (referred to as HILN olivines) relative to the other olivines in the same rock, (b) A dominant population of euhedral and often skeletal (hopper) olivines that are richer in Mg and Ni than the HILN olivines in the same rock. There are in addition lsquounusualrsquo hopper olivines that are petrographically similar to the skeletal olivines, but show aberrant zonation patterns. Hopper and HILN type olivines contain fluid and carbonate inclusions which apparently record the loss of a vapour phase and an immiscible carbonate liquid during magma ascent, (c) A third population consists of large rounded olivines (megacrysts), up to 40 mm in greatest diameter. Individuals are chemically homogeneous, but megacrysts from the same pipe collectively define a trend of decreasing Mg and Ni (Fo92, 0.36% Ni to Fo75, 0.17% Ni). The most fayalitic megacrysts are depleted in Mg and Ni relative to the hopper olivines in the same rock, (d) Scarce magnesium-rich (Fo91) anhedral olivines which show strained extinction are believed to be xenocrysts.It is suggested that the HILN-type olivines crystallized from primitive carbonate-rich magmas under conditions of low oxygen fugacity, intermediate between the Ni-NiO and Fe-FeO buffers. Mineral-melt partition coefficients for the transition elements determined in basaltic systems are considered to be inappropriate to such carbonate-rich melts. Loss of volatiles and an immiscible carbonate liquid during magma ascent resulted in an increase in oxygen activity, a decrease in the Fe-Mg distribution coefficient (K D ) for olivine and liquid and an increase in liquidus temperatures. These effects led to the rapid crystallization of Mg- and Ni-enriched skeletal hopper olivines. The lsquounusualrsquo hoppers crystallized later than the HILN olivines but prior to the lsquonormalrsquo hoppers, under conditions chracterized by rapid and independent changes in oxygen activity and partition coefficients associated with the loss of volatiles and an immiscible carbonate liquid. The range in chemistry which characterizes the megacryst-olivine suite is believed to record physico-chemical changes to the magmas subsequent to separation from a mantle source area, but prior to crystallization of the HILN olivines. Most important of these changes was an increasing degree of polymerization of the liquid structure and a progressive decrease in oxygen activity as the molar ratio (CO 3 2- /(CO 3 2- + CO2)) in the magma increased with decreasing pressure. Increasing polymerization of the liquid resulted in an increase in olivine-liquid partition coefficients for transition elements.Olivines in kimberlites show compositional characteristics and zonation patterns similar to those recognized in the olivine melilitites which, coupled with ilmenite compositions, suggests that the two magma types initially evolved along similar physico-chemical paths.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号