首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Composition of Li-F granite melt and its evolution during the formation of the ore-bearing Orlovka massif in Eastern Transbaikalia
Authors:E V Badanina  L F Syritso  E V Volkova  R Thomas  R B Trumbull
Institution:(1) Helmholtz Centre Potsdam, GFZ - German Research Centre for Geosciences, Potsdam, Germany;(2) ARC Centre of Excellence in Ore Deposits, University of Tasmania, Hobart, Australia;(3) Geological Department, St.-Petersburg State University, St. Petersburg, Russia
Abstract:By the example of the Orlovka massif of Li-F granites in Eastern Transbaikalia, the major- and trace-element (Li, Be, B, Ta, Nb, W, REE, Y, Zr, and Hf) compositions of the parental melt and the character of its variations during the formation of the differentiated rock series were quantitatively estimated for the first time on the basis of electron and ion microprobe analysis and Raman spectroscopy of rehomogenized glasses of melt inclusions in quartz. It was shown that the composition of the Orlovka melt corresponded to a strongly evolved alumina-saturated granitoid magma (A/CNK = 1.12–1.55) rich in normative albite, poor in normative quartz, and similar to ongonite melts. This magma was strongly enriched in water (up to 9.9 ± 1.1 wt %) and fluorine (up to 2.8 wt %). Most importantly, this massif provided the first evidence for high B2O3 contents in melts (up to 2.09 wt %). The highest contents of trace elements were observed in the melt from pegmatoid bodies in the amazonite granites of the border zone: up to 5077 ppm Li, 6397 ppm Rb, 313 ppm Cs, 62 ppm Ta, 116 ppm Nb, and 62 ppm W. Compared with the daughter rock, the Orlovka melt was depleted at all stages of formation in SiO2 (by up to 6 wt %), Na2O (by up to 2.5 wt %), and, to a smaller extent, in Ti, Fe, Mg, Sr, and Ba, but was enriched in Mn, Rb, F, B, and H2O.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号