首页 | 本学科首页   官方微博 | 高级检索  
     检索      


A new smooth hysteretic model for ductile flexural‐dominated reinforced concrete bridge columns
Authors:Ping‐Hsiung Wang  Yu‐Chen Ou  Kuo‐Chun Chang
Institution:1. National Center for Research on Earthquake Engineering, Taipei, Taiwan;2. Department of Civil Engineering, National Taiwan University, Taipei, Taiwan
Abstract:A new smooth hysteretic model is proposed for ductile, flexural‐dominated reinforced concrete bridge columns. Four columns designed per modern seismic codes were tested using monotonically increasing and variable‐amplitude cyclic loading protocols and ground motion loading to develop the model. Based on the test results, hysteretic rules for damage accumulation and path dependence of reloading were constructed. For damage accumulation, unloading stiffness degradation is correlated with the maximum displacement and hysteretic energy dissipation, while reloading stiffness degradation is set equal to the unloading stiffness degradation. Pinching severity is related to the residual displacement in the direction opposite to the loading direction. Strength deterioration is correlated with the damage index and does not occur until the damage index reaches a threshold, after which the deterioration is proportional to the increase of the damage index. For path dependence of reloading, reloading paths are classified into primary paths and associate paths. The primary paths are those that start from a residual displacement that is equal to or larger than the previous maximum one. The associate paths are those that do not belong to primary paths and tend to be directed towards certain points. Reloading without load reversal is assumed to be linear. Comparison with the results of pseudo‐dynamic tests using three consecutive ground motions showed that the proposed model closely matched the test results. Copyright © 2017 John Wiley & Sons, Ltd.
Keywords:smooth hysteretic model  damage accumulation  path dependence  primary path  associate path  pseudo‐dynamic test
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号