首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Evolution of a Callovian-Oxfordian carbonate margin in the Neuquén Basin of west-central Argentina: facies, architecture, depositional sequences and global sea-level changes
Authors:Leonardo Legarreta
Institution:

ASTRA C.A.P.S.A, Contracts and New Ventures, Exploration, Tucumàn 744 piso 16, 1049, Buenos Aires, Argentina

Abstract:This paper reviews a detailed stratigraphic and sedimentologic study of a carbonate complex developed on the foreland side of the Neuquén Embayment, a protected shallow-water epicratonic site behind the active edge of the South American plate. Superb outcrops at the core of basement-involved Andean structures expose the shelf-to-basin transition and reveal with clarity the external and the internal architecture of the depositional sequences and component system tracts. Platform carbonates are largely represented by ooid and mainly rhodoid grainstones, with associated patches of coral framestone. The deeper platform and slope facies are composed of oncoidal and skeletal micritic limestones with scattered coral-sponge-algal build-ups. The overall composition and facies pattern bears resemblance to other Late Jurassic carbonate complexes form Europe and with the Smackover Formation from the Gulf Coast Basin of North America.

Analysis based on mapping of the stratal patterns and facies associations in outcrops allowed the recognition of four depositional sequences. Timing provided by ammonite biochronology suggests that eustatic fluctuations were a major factor influencing the carbonate-margin architecture, and regulated episodes of condensed sedimentation, shifts of the depositional belts, and development of stratigraphic discontinuities. The onset and the end of carbonate sedimentation were associated with episodes of marine retreat and accumulation of evaporites and eolian-fluvial deposits at basin-centre locations. However, most of the marine fluctuations recorded within the carbonate complex were insufficient to expose the shelf break (Type 2), and accordingly lowstand system tracts are poorly represented. On the shelf the transgressive system tracts are represented by thin grain-supported carbonate blankets. These taper out downslope into omission surfaces or are replaced by patches of small sponge buildups. Highstand system-tract organization changes through time, reflecting changes in productivity and accomodation, presumably tied to second-order sea-level changes. Callovian highstand accumulation featured a catch-up carbonate system and produced a thin-aggradational ramp configuration, whereas conditions during middle-late Oxfordian allowed a keep-up system and produced outbuilding depositional geometries with steeper slopes.

Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号