首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Dynamics of an interacting luminous disc, dark halo and satellite companion
Authors:Martin D Weinberg
Institution:Department of Physics and Astronomy, University of Massachusetts, Amherst, MA 01003-4525, USA
Abstract:This paper describes a method, based on linear perturbation theory, to determine the dynamical interaction between extended halo and spheroid components and an environmental disturbance. One finds that resonant interaction between a galaxy and passing interlopers or satellite companions can carry the disturbance inward, deep inside the halo, where it can perturb the disc.    Applied to the Milky Way for example, the LMC and SMC appear to be sufficient to cause the observed Galactic warp and possibly seed other asymmetries. This is a multi-scale interaction in which the halo wake has a feature at roughly half the satellite orbital radius owing to a 2:1 orbital resonance. The rotating disturbance then excites an m  = 1 vertical disc mode which has the classic integral-sign morphology. A polar satellite orbit produces the largest warp and therefore the inferred LMC orbit is nearly optimal for maximum warp production.   Both the magnitude and morphology of the response depend on the details of the disc and halo models. Most critically, a change in the halo profile will shift the resonant frequencies and response location and consequently alter the coupling to the bending disc. Increasing the halo support relative to the disc, a sub-maximal disc model, decreases the warp amplitude.   Finally, the results and prognosis for N -body simulations are discussed. Discreteness noise in the halo, similar to that arising from a population of 106-M⊙ black holes, can produce observable warping.
Keywords:Galaxy: halo  Galaxy: structure  galaxies: haloes  galaxies: kinematics and dynamics  Magellanic Clouds
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号