首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Plasma-sheet dynamics and magnetospheric substorms
Authors:TW Hill  PH Reiff
Institution:Space Physics and Astronomy Department, Rice University, Houston, TX 77001, U.S.A.
Abstract:We present a conceptual model of the formation of the plasma sheet and of its dynamical behavior in association with magnetospheric substorms. We assume that plasma mantle particles E×B drift toward the current sheet in the center of the tail where they are accelerated by magnetic-field annihilation to form the plasma sheet. Because of the velocity-dependent access of mantle particles to the current sheet, we argue that the convection electric field and the corresponding rate of field annihilation decrease with increasing radial distance. As a consequence, there exists no steady-state configuration for the plasma sheet, which must instead shrink continuously in thickness until the near-earth portion of the current sheet is disrupted by the formation of a magnetic neutral line. The current-sheet disruption launches a large-amplitude hydromagnetic wave which is largely reflected from the ionosphere. The reflected wave sets the neutral line in motion away from the earth; the neutral line comes to rest at a distance (which we estimate to be a few hundred earth radii) where the incoming mantle particles enter the current sheet at the local Alfvén velocity. At this “Alfvén point” reconnection ceases and the thinning of the plasma sheet begins again. Within this model, the magnetospheric substorm (which is associated with the current-sheet disruption) is a cyclical phenomenon whose frequency is proportional to the rate of convection in the magnetospheric tail.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号