首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Characteristic Features of Tin–iron–copper Mineralization in the Anle-Huanggangliang Mining Area, Inner Mongolia, China
Authors:Daizo ISHIYAMA  Ryoji SATO  Toshio MIZUTA  Yohei ISHIKAWA  Jingbin WANG
Institution:Department of Earth Science and Technology, Faculty of Engineering and Resource Science, Akita University, Akita 010–8502, Japan [];Chinese Research Center for Mineral Resources Exploration, Institute of Geology and Geophysics, Chinese Academy of Sciences, A–11 Datun Road, Chaoyang District, Beijing 100101, China;with additional position at Beijing Institute of Geology for Mineral Resources, Beijing 100012, China
Abstract:Abstract: The Anle Sn‐Cu and Huanggangliang Fe‐Sn deposits have been exploited in the Linxi district, which is located 165 km northwest of Chifeng City in northern China. In this study the formation mechanisms of the tin deposits in the Anle and Huanggangliang mining area were investigated to understand the mechanisms of tin mineralization in northern China. The veins of the Anle deposit are divided into cassiterite–quartz–chlorite veins, chalcopyrite‐bearing quartz veins, cassi–terite–chalcopyrite–bearing quartz veins and sphalerite‐quartz veins. The sequence of mineralization is tin mineralization (stage I), copper mineralization (stage II), and lead‐zinc mineralization (stage III). The Huanggangliang tin deposit consists of magnetite skarn orebodies and many cassiterite‐bearing feldspar–fluorite veins and veinlets cutting the magnetite orebodies. The fluid inclusions in quartz and fluorite in ores from the Anle and Huanggangliang tin deposits are divided into two‐phase fluid inclusions, vapor‐rich fluid inclusions and poly‐phase fluid inclusions. The final homogenization temperatures of fluid inclusions of quartz in the ores of the Anle deposit and fluorite of tin‐bearing feldspar veins in the Huanggangliang tin deposit range from 195 to 425C and from 215 to 450C, respectively. The fluids responsible for the Anle and Huanggangliang tin deposits were of very high temperature and NaCl‐rich ones containing K, Ca, Al, Si, Ti, Fe and Cl in addition to ore metals such as Sn and Cu. The temperature and chemical composition of fluid in fluid inclusions of igneous rocks in the mining area are very similar to those of fluid in fluid inclusions in the ores of these deposits. The fluid for these ore deposits had a close relation with the fluid coexisting with melt of Late Jurassic granitic rocks in this mining area. Salinities of fluid inclusions from these ore deposits and granitic rocks in the mining area were estimated to range from 35 to 50 wt % NaCl equivalent. Based on arsenopy‐rite geothermometry and fluid inclusion studies, a fluid containing 40 wt% NaCl (eq.) could be formed by phase separation of fluid having 6 wt% NaCl (eq.) at a temperature of 420 to 500C and a pressure of 0.3 to 0.4 kb. The temperatures and pressures presented above indicate an NaCl‐rich magmatic fluid derived from granitic melt that had intruded into a shallow level of crust caused the Sn–Fe–Cu mineralization of the mining area. The geological relationship between these ore deposits and granitic bodies around the ore deposits, and the similarity of fluids forming these ore deposits and coexisting with granitic melt, suggest that these ore deposits were formed by the activity of fluid derived from granitic melt in Late Jurassic age.
Keywords:Inner Mongolia  Jurassic  Cretaceous  tin  cassiterite  granite
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号