首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Laboratory Studies Of Wind Stress Over Surface Waves
Authors:B Mete Uz  Mark A Donelan  Tetsu Hara  Erik J Bock
Institution:(1) Graduate School of Oceanography, University of Rhode Island, U.S.A;(2) Rosenstiel School of Marine and Atmospheric Science, University of Miami, U.S.A;(3) Interdisciplinary Center for Scientific Computing, University of Heidelberg, Germany
Abstract:Simultaneous laboratory observations of wind speed, wind stress, and surfacewind-wave spectra are made under a variety of wind forcing patterns using cleanwater as well as water containing an artificial surfactant. Under typical experimentalconditions, more than half of the total stress is supported by the wave-induced stressrather than by the surface viscous stress. When the surfactant reduces the shortwind-wave spectra, the wind stress also decreases by as much as 20–30% at agiven wind speed. When the wind forcing is modulated in time, the wind stresstends to be higher under decreasing wind than under increasing wind at a givenwind speed, mainly because the response of short wind-wave spectra to varyingwind forcing is delayed in time. These examples clearly demonstrate that therelationship between the wind speed and the wind stress can be significantlymodified if the surface wave field is not in equilibrium with the wind forcing.Next, we examine whether the wind stress is estimated accurately if the wave-inducedstress by all surface wave components is explicitly evaluated by linear superpositionand is added to the surface viscous stress. It is assumed that the surface viscous stressis uniquely related to the wind speed, and that the wind input rate is determined by thelocal, reduced turbulent stress rather than the total stress. Our wind stress estimatesincluding the wave contributions agree well with observed wind stress values, evenif the surface wave field is away from its equilibrium with the wind in the presenceof surface films and/or under time-transient wind forcing. These observations stronglysuggest that the wind stress is accurately evaluated as a sum of the wave-induced stressand the surface viscous stress. At very high winds, our stress estimates tend to be lowerthan the observations. We suspect that this is because of the enhancement of wind stressover very steep (or breaking) short wind-waves.
Keywords:Drag coefficient  Surface waves  Wave-induced stress  Wind stress
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号