首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Shearing of a narrow granular layer with polar quantities
Authors:J Tejchman  G Gudehus
Abstract:The paper deals with numerical investigations of the behaviour of granular bodies during shearing. Shearing of a narrow layer of sand between two very rough boundaries under constant vertical pressure is numerically modelled with a finite element method using a hypoplastic constitutive relation within a polar (Cosserat) continuum. The constitutive relation was obtained through an extension of a non‐polar one by polar quantities, viz. rotations, curvatures, couple stresses using the mean grain diameter as a characteristic length. This relation can reproduce the essential features of granular bodies during shear localization. The material constants can be easily determined from element test results and can be estimated from granulometric properties. The attention is laid on the influence of the initial void ratio, pressure level, mean grain diameter and grain roughness on the thickness of shear zones. The results of shearing are also compared to solutions without the polar extensions. The FE‐calculations demonstrate that polar effects manifested by the appearance of grain rotations and couple stresses are significant in the shear zone, and its thickness is sensitive to the initial void ratio, mean grain diameter and layer height. The effect of the pressure level is rather low within the considered range. Copyright © 2001 John Wiley & Sons, Ltd.
Keywords:characteristic length  granular material hypoplasticity  polar continuum  shearing
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号