首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Computations of forces on, and particle orbits around, horizontal cylinders under steep waves
Authors:J Skourup  IG Jonsson
Abstract:A numerical method, based on a boundary integral equation combined with a non-linear time stepping procedure for the free water surface, is developed for simulations of the interaction between highly non-linear water waves and submerged horizontal cylinders. The method is based on potential theory, and the omission of viscous effects restricts the wave-structure interaction computations to low Keulegan-Carpenter numbers where inertia forces are dominant. The numerical scheme is verified by computations with a steep wave of exact form during several wave periods, and by computations of a breaking wave. A new method for tracing the orbits of water particles in the fluid domain is developed, and the influence from submerged structures on the orbits is visualized through several computational examples. The wave forces on submerged structures are computed and are found to correspond well with other computed results for low Keulegan-Carpenter numbers.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号