首页 | 本学科首页   官方微博 | 高级检索  
     检索      


New paleomagnetic result from the Ethiopian flood basalts in the Abbay (Blue Nile) and Kessem gorges
Authors:Tesfaye Kidane  Bekele AbebeVincent Courtillot  Emilio Herrero
Institution:a SOEST, Hawaii Institute of Geophysics and Planetology, University of Hawaii at Manoa, Paleomagnetic Laboratory, 2525 Correa Road, Honolulu, HI 96822, USA
b Department of Geology and Geophysics, Addis Ababa University, P.O. Box 1176, Addis Ababa, Ethiopia
c Laboratoire de Paléomagnetisme et de Tectonique, Institut de Physique du Globe de Paris, 75230 Paris Cedex 05, France
Abstract:New paleomagnetic investigations on the Ethiopian trap series have been undertaken at the Abbay and Kessem gorges in an attempt to better constrain the 30 Ma paleomagnetic pole of Africa. We sampled six thick massive basaltic lava flows, totaling 230 m, from Abbay Gorge and 10 lava flows, 180 m in thickness, from Kessem Gorge. Detailed paleomagnetic analyses disclosed that the carriers of the characteristic remanent magnetization (ChRM) are different in different lava flows. These are mostly titanomagnetites, titanomaghemites, and magnetite minerals with a broad range of coercive force and blocking temperatures. The heating and cooling susceptibility vs. temperature curves, many of which are irreversible, may indicate chemical remagnetization, notably low temperature maghemitization. Only one flow (KS04) with a clear 580°C Curie temperature was apparently unaffected by chemical remagnetization. The ChRM direction of this flow is identical to that in other flows, which suggests that if and when remagnetization occurred, this was shortly after emplacement of the lava flows. All of the flows sampled have normal polarity. However, a reversed component of low to medium coercive force and low to medium unblocking temperature occurs in flow KS01 at Kessem Gorge. The ChRM directions for the 16 sites are D=3.1°, I=5.8° (α95=12.7°). The paleomagnetic pole obtained from these is at λ=83.0°N, φ=193.3°E (A95=9.0°). Comparison with three previous studies of the traps shows remarkable consistency and a number of means are derived and discussed. Two final preferred poles for the traps are at λ=79.0°N, φ=196.9°E (A95=2.8°) when all 112 published flows are used, and λ=78.7°N, φ=209.4°E (A95=3.4°) when only the 76 flows from the four more recently analyzed sections are included. Both are compatible with the recent reference synthetic pole for Africa of Courtillot and Besse J. Geophys. Res. (2002) in press]. In that sense, the Ethiopian trap pole is not anomalous and does not require more of a non-dipolar contribution than indicated by analyses of the global paleomagnetic data base covering the last few million years.
Keywords:Ethiopia  Oligocene  pole positions  flood basalts  paleomagnetism
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号