首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Cognate clinopyroxene from Paleogene mantle xenolith-bearing basanite lavas (East Serbia, SE Europe): the role of dissolution of mantle orthopyroxene
Authors:Vladica Cvetkovi?  Suzana Eri?  Ma?a Radivojevi?  Kristina ?ari?
Institution:1. Faculty of Mining and Geology, University of Belgrade, ?u?ina 7, 11000, Belgrade, Serbia
Abstract:The study focuses on clinopyroxene from mantle xenolith-bearing East Serbian basanites and suggests that dissolution of mantle orthopyroxene played an important role in at least some stages of the crystallization of these alkaline magmas. Five compositional types of clinopyroxene are distinguished, some of them having different textural forms: megacrysts (Type-A), green/colourless-cored phenocrysts (Type-B), overgrowths and sieve-textured cores (Type-C), rims and matrix clinopyroxene (Type-D), and clinopyroxene from the reaction rims around orthopyroxene xenocrysts (Type-E). Type-A is high-Al diopside that probably crystallized at near-liquidus conditions either directly from the host basanite or from compositionally similar magmas in previous magmatic episodes. Type-B cores show high VIAl/IVAl≥1 and low Mg# of mostly <75 and are interpreted as typical xenocrysts. Type-C, D and E are interpreted as typical cognate clinopyroxene. Type-D has Mg#<78, Al2O3?=?6–13?wt.%, TiO2?=?1.5–4.5?wt.%, and Na2O?=?0.4–0.8?wt.% and compositionally similar clinopyroxene is calculated by MELTS as a phase in equilibrium with the last 30?% of melt starting from the average host lava composition. Type-C has Mg#?=?72–89, Al2O3?=?4.5–9.5?wt.%, TiO2?=?1–2.5?wt.%, Na2O?=?0.35–1?wt.% and Cr2O3?=?0.1–1.5?wt.%. This clinopyroxene has some compositional similarities to Type-E occurring exclusively around mantle orthopyroxene. Cr/Al vs Al/Ti and Cr/Al vs Na/Ti plots revealed that Type-C clinopyroxene can crystallize from a mixture of the host basanite magma and 2–20?wt.% mantle orthopyroxene. Sieve-textured Type-C crystals show characteristics of experimentally produced skeletal clinopyroxene formed by orthopyroxene dissolution suggesting that crystallization of Type-C was both texturally and compositionally controlled by orthopyroxene breakdown. According to FeO/MgOcpx/melt modelling the first clinopyroxene precipitating from the host basanite was Type-A (T?~?1250?°C, p?~?1.5?GPa). Dissolution of orthopyroxene produced decreasing FeO/MgOmelt and crystallization of Type-E and sieve-textured Type-C clinopyroxene (0.3–0.8?GPa and 1200–1050?°C). The melt composition gradually shifted towards higher FeO/MgOmelt ratios precipitating more evolved Type-C and Type-D approaching near-solidus conditions (<0.3?GPa; ~950?°C).
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号