首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Dynamic subsidence of Eastern Australia during the Cretaceous
Authors:Kara J Matthews  Alina J Hale  Michael Gurnis  R Dietmar Müller  Lydia DiCaprio
Institution:1. Géosciences Environnement Toulouse, Université Paul Sabatier, Toulouse, France;2. CNRS/INSU/IRD/CNES, UMR 5563, Observatoire Midi Pyrénées, 14 av. E. Belin, 31400 Toulouse Cédex, France;3. Institut des Sciences de la Terre, Université Joseph Fourier, Observatoire des Sciences de l''Univers de Grenoble, Maison des Géosciences, 38041 Grenoble Cédex 9, France;4. CNRS/INSU, UMR 5275, Observatoire des Sciences de l''Univers de Grenoble, 38041 Grenoble Cedex 9, France;5. Géosciences Rennes, Université de Rennes 1, Campus de Beaulieu, 35042 Rennes Cédex, France;6. CNRS/INSU, UMR 6118, Campus de Beaulieu, 35042 Rennes Cédex, France;1. Chinese Antarctic Center of Surveying and Mapping, Wuhan University, Wuhan, China;2. Second Institute of Oceanography, Key Lab of Submarine Geosciences, SOA, Hangzhou, China;3. Institute of Geophysics and Geomatics, China University of Geosciences, Wuhan, China;1. GNS Science, Dunedin 9054, New Zealand;2. GEOMAR Helmholtz Centre for Ocean Research Kiel, Germany;3. Christian-Albrechts University of Kiel, Germany;4. GNS Science, Lower Hutt 5040, New Zealand;5. University of California, Santa Barbara, CA 93106, USA;6. AWI Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
Abstract:During the Early Cretaceous Australia's eastward passage over sinking subducted slabs induced widespread dynamic subsidence and formation of a large epeiric sea in the eastern interior. Despite evidence for convergence between Australia and the paleo-Pacific, the subduction zone location has been poorly constrained. Using coupled plate tectonic–mantle convection models, we test two end-member scenarios, one with subduction directly east of Australia's reconstructed continental margin, and a second with subduction translated ~ 1000 km east, implying the existence of a back-arc basin. Our models incorporate a rheological model for the mantle and lithosphere, plate motions since 140 Ma and evolving plate boundaries. While mantle rheology affects the magnitude of surface vertical motions, timing of uplift and subsidence depends on plate boundary geometries and kinematics. Computations with a proximal subduction zone result in accelerated basin subsidence occurring 20 Myr too early compared with tectonic subsidence calculated from well data. This timing offset is reconciled when subduction is shifted eastward. Comparisons between seismic tomography and model temperature cross-sections, and an absence of subduction zone volcanism in eastern Australia in the Early Cretaceous provide support for the back-arc basin scenario.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号