首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Metal Distribution in Different Size Fractions of Natural Organic Matter
Authors:Daniel Schmitt  Margit B Müller  Fritz H Frimmel
Abstract:In this paper, size‐exclusion chromatography (SEC) was used to determine the metal concentration in different size fractions of a bog lake water. Two methods were applied: (a) preparative SEC with off‐line metal concentration analysis and (b) direct coupling of an analytical SEC system on‐line with an inductively‐coupled plasma mass spectrometer (ICP‐MS). In the preparative SEC measurements, maximum concentrations were found for different metal ions in different size fractions of the natural organic matter (NOM). Normalization of metal concentrations to dissolved organic carbon concentration (DOC) yielded two maxima in the high and in the very low molecular‐weight fractions. Whereas good recoveries were found for Al, Fe, and Ni, only 40% were obtained for Pb. This indicates that Pb formed labile complexes with NOM, and hence could strongly interact with the column material. In the experiments with the analytical SEC‐ICP‐MS system, the same trends were observed, but with even lower recoveries than in the preparative system. Sample preconcentration and storage were also investigated with respect to decrease in metal concentration. During the ultrafiltration preconcentration step Al and Fe were removed only to a small extent, whereas about half of the initial Pb was lost. This indicates that Al and Fe were mainly bound to high molecular‐weight fractions of NOM. In contrast to that, Al and in particular Fe were removed from solution more than proportionally with respect to DOC because of aggregation of the NOM during storage, whereas Pb and Ni were concentrated relative to the DOC.
Keywords:Metal Complexation  Size‐exclusion Chromatography  ICP‐MS  Dissolved Organic Carbon  Metallkomplexierung  Grö  ß  enausschlusschromatographie  ICP‐MS  Gelö  ster Organisch Gebundener Kohlenstoff
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号