首页 | 本学科首页   官方微博 | 高级检索  
     检索      

Episodic crustal growth and reworking at the southeastern margin of the North China Craton: evidence from zircon U–Pb and Lu–Hf isotopes of Archean tonalite–trondhjemite–granodiorite gneisses in the Bengbu-Wuhe area
摘    要:The cratonization history of the North China Craton(NCC) and the nature of tectonothermal events are still highly controversial. Tonalite-trondhjemite-granodiorite(TTG) gneisses, as the dominant lithological assemblages in Archean metamorphic terranes, can provide significant clues to the magmatic and metamorphic evolution of Precambrian crust. This study presents zircon laser-ablation inductively-coupled-plasma mass spectrometry U–Pb ages, trace-element, and in-situ LA-MC-ICPMS zircon Hf isotope data for the TTG gneisses from the Bengbu-Wuhe area on the southeastern margin of the NCC.Cathodoluminescence images and trace elements indicated that magmatic zircons display the characteristics of euhedral-subhedral crystals with oscillatory growth zoning structures, high RREE contents, marked Ce positive anomalies, and Pr–Eu negative anomalies. The metamorphic zircons display the spherical-oval crystals with distinct core-rim structures, high and homogeneous luminescent intensity, lower RREE, Nb, Ta, Hf contents,relative flat REE patterns, weak Ce positive anomalies, and Pr-Eu negative anomalies. The Ti–in–zircon geothermometer data indicate that the crystallization temperature of the TTG gneiss ranged from 754 to 868 ℃. Zircon U–Pb ages indicate that the TTG gneisses formed at 2.79–2.77 Ga and 2.50 Ga and underwent metamorphism at 2.57–2.52 Ga. The Hf isotopic data indicate that the magmatic zircons exhibit high, positive eHf(t) values close to those of the coeval depleted mantle, whereas the metamorphic zircons exhibit negative or nil eHf(t) values. This implies that the TTG gneisses were derived from the partial melting of the ~ 2.9–2.6 Ga juvenile crustal sources mixed with ~ 3.0–2.8 Ga ancient crustal materials.Combined with the regional tectonic evolution, we propose that the metamorphic basement at the southeastern margin of the NCC underwent episodic crustal growth at ~ 2.7 and ~ 2.5 Ga and subsequently underwent crustal reworking or re-melting of the ancient crust during the Neoarchean. The Neoarchean TTG gneisses might have been derived from the partial melting of lower crustal materials related to plate subduction.

本文献已被 CNKI 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号