首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Scaling relations governing magnetospheric energy transfer
Authors:Vytenis M Vasyliunas  Joseph R Kan  George L Siscoe  S-I Akasofu
Institution:Max-Planck-Institut für Aeronomie, D-3411 Katlenburg-Lindau 3, Federal Republic of Germany
Abstract:The functional dependence on solar wind parameters of the rate of energy transfer from the solar wind into the magnetosphere is subject to constraints imposed by dimensional analysis. The form and extent of the constraints depend on assumption about the energy coupling mechanisms, specifically on the relative importance of electromagnetic coupling (MHD flows effects), ionospheric conductivity effects (through Birkeland currents), and the viscous coupling. The effective viscosity coefficient scales in a well-defined manner with solar wind parameters, and its effect is dimensionally the same as that of more general finite-gyroradius mechanisms. We obtain the general form of the expression for energy transfer which takes all these effects into account and which can then be specialized to specific assumptions about the coupling mechanism. We point out the needed changes in energy transfer formulas previously used in the littrature, which make them conform to the requirements of dimensional analysis. Electromagnetic coupling yields the most restrictive formulas for energy transfer, although a unique expression cannot be obtained either on solely dimensional grounds or from presently available theory. Modifications required by the addition of viscous or finite-gyroradius effects are well defined but small and likely to be difficult to detect in practice. Assumptions of energy transfer by solar wind plasma entry leads to expressions equivalent, as far as dimensional arguments go, to those based on assumptions of electromagnetic or viscous coupling. Ionospheric conductivity effects are likely to be minor since Joule heating in the ionosphere is a relatively small fraction of the magnetospheric energy budget. All energy transfer formulas discussed presuppose a well-defined set of solar wind parameters and hence can be valid only on time scales longer than the solar wind flow time past the magnetosphere, which is also the expected time scale for energy storage (if any) in the magnetotail.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号