首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Sapphirine + quartz assemblage in contrasting textural modes from the Eastern Ghats Belt, India: Implications for stability relations in UHT metamorphism and retrograde processes
Authors:Sankar Bose  Kaushik Das
Institution:

aDepartment of Geology, Presidency College, Kolkata 700 073, India

bDepartment of Applied Geology, Indian School of Mines, Dhanbad 826004, India

Abstract:Stability of the assemblage sapphirine + quartz in Mg–Al-rich granulites implies ultrahigh temperature (UHT) condition of metamorphism but their direct contact is rarely preserved in natural rocks. The present study shows contrasting textural relations between sapphirine and quartz in different parts of the same occurrence of a Mg–Al-rich granulite, Eastern Ghats Belt, India. Textural data suggest stabilization of the assemblage sapphirine + quartz with orthopyroxene and cordierite during the metamorphic peak. Thermometric estimates yield temperature exceeding 950 °C for the stability of this assemblage. Most of such sapphirine grains (Spr1) are texturally separated from quartz and cordierite grains by double corona of sillimanite + orthopyroxene that results due to isobaric cooling during the post-peak stage. Sapphirine (Spr2) also forms a symplectic intergrowth with quartz and orthopyroxene at the fringe of coarse orthopyroxene. This textural feature can be explained by the breakdown of (Fe, Mg)-Tschermak components of orthopyroxene during the same isobaric cooling episode from UHT peak condition. The preservation of grain contact of this intergrown sapphirine and quartz can be attributed to a problem in reaction kinetics. In the other mode, sapphirine (Spr3) occurs with quartz with a thin skin of cordierite near a quartz vein. Such texture could result from isothermal decompression of the cooled crust. Alternatively and more possibly, cordierite could form from ingress of CO2–H2O rich fluid during terminal stage of cooling. Finally, sapphirine (Spr4) and quartz show direct contact close to the quartz vein. Direct contact of such sapphirine and quartz represents textural disequilibrium as this particular quartz is introduced as a vein much later than the peak metamorphism but prior to the major foliation-forming deformation. Coarse sapphirine and vein quartz, therefore, accidentally came in contact with each other and persisted metastably. Therefore, though coexistence of sapphirine and quartz is considered to be a strong evidence for ultrahigh temperature condition, care should be taken to decipher their stable coexistence. Different types of textural relations involving this mineral pair could originate in a single rock, probably in different stages of its metamorphic history.
Keywords:Sapphirine + quartz  UHT metamorphism  Stable contact  Metastability  Eastern Ghats Belt
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号