首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Convective flux in the solar photosphere as determined from fluctuations
Authors:Frank N Edmonds Jr
Institution:1. Dept. of Astronomy, The University of Texas at Austin, Tex., U.S.A.
Abstract:The fractional convective flux πF c (x c /πF) is computed for the effective level x c = logτ c = 0.125, using bi-dimensional co-spectra for relative continuum-brightness fluctuations ΔI and radial velocity fluctuations ΔV measured for the C i 5052.16 spectral line. A more uncertain flux for x Fe ≈ - 0.9 is obtained for the Fe i 5049.83 line. Since the results (Figure 1) incorporate current uncertainties in RMS ΔI , RMS ΔV and RMS ΔT (x), where ΔT are photospheric temperature fluctuations, they must be considered qualitative until these uncertainties are appreciably reduced. The requirement that the fractional convective flux < 1, places restrictions on these uncertainties which suggest that current RMS ΔT (x)'s are too large. The results confirm the importance of overshoot at the top of the solar hydrogen convection zone and suggest a non-negligible fractional convective flux throughout the lower photosphere. Qualitatively, they do not agree with the predictions of the generally-used, local, mixing-length theory or those of Parsons' (1969) modified mixing-length theory. However, qualitative agreement with the predictions of the non-local, generalized mixing-length theory of Spiegel (1963) and with the non-local theory of Ulrich (1970) cannot be considered as observational confirmation of these theories.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号