首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Comparison of climatic efficiency of the mechanisms of land-surface albedo changes caused by land use
Authors:A V Eliseev
Institution:1. A.M. Obukhov Institute of Atmospheric Physics, Russian Academy of Sciences, Pyzhevskii per. 3, Moscow, 119017, Russia
Abstract:Changes in ecosystem types, including situations when natural vegetation is replaced by agricultural lands, leads to surface albedo changes and the development of the corresponding short-wave radiative forcing (RF). This work analyzes ensemble numerical experiments with the climatic model (CM) of the Institute of Atmospheric Physics at the Russian Academy of Sciences (IAP RAS) for the 16th–21st centuries. The responses to changes in the contents of greenhouse gases and sulfate aerosols (tropospheric and stratospheric), in the solar constant, and in the land-surface albedo when natural vegetation is replaced by agricultural lands were modeled during these experiments. Different members of these ensemble experiments were obtained by varying the model parameters affecting the RF on the climate during land use: the albedo of agricultural lands was varied within the interval from 0.15 to 0.25 and the parameter controlling the efficiency of snow masking by tree vegetation was varied in the range from the absence of this effect to its maximally possible efficiency. It has been established that changes in surface albedo when natural vegetation is replaced by agricultural lands have the largest influence on the globally averaged annual mean RF at the top of the atmosphere, whereas the influence of snow masking on the RF is substantially less. This phenomenon is caused by the fact that snow masking by tree vegetation can take place only in winter in regions of temperate and high latitudes, when insolation is relatively low. A comparison of the spatial structure of the annual mean response of the surface temperature with the HadCRUT3v and GISS observational data makes it possible to narrow the admissible range of model parameter values. In particular, it can be inferred that the key parameter values which control the influence that land use has on the surface albedo in the IAP RAS CM are close to optimal. In addition, variations in these parameters do not lead to a significant influence of land use on climate change in the 21st century if the Land Use Harmonization (LUH) scenarios of changes in the area of agricultural lands are used: the uncertainty of the model response associated with the uncertainty of values of such controlling parameters in the 21st century does not exceed 0.1 K.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号