首页 | 本学科首页   官方微博 | 高级检索  
     检索      

五莲拆离断层带动态重结晶石英颗粒的分形特征及流变参数估算
引用本文:孙煜杰,倪金龙,史晓晓,郭颖.五莲拆离断层带动态重结晶石英颗粒的分形特征及流变参数估算[J].现代地质,2019,33(1):36-44.
作者姓名:孙煜杰  倪金龙  史晓晓  郭颖
作者单位:1.山东科技大学 地球科学与工程学院,山东 青岛 2665902.海洋矿产资源评价与探测技术功能实验室,青岛海洋科学与技术国家实验室,山东 青岛 2662373.中国地质大学(北京) 地球科学与资源学院,北京 1000834.临沂大学 地质与古生物研究所,山东 临沂 276000
基金项目:国家自然科学基金重点项目(41172089);山东省自然科学基金项目(ZR2018MD010);山东省自然科学基金项目(ZR2017PD001);山东省沉积成矿作用与沉积矿产重点实验室开放课题(DMSM2017018)
摘    要:五莲拆离断层带中石英韧性变形明显,在野外主要表现为条带状、拔丝状,显微镜下主要表现为多晶石英条带,发育亚颗粒旋转重结晶和膨凸重结晶,剪切带经历了中低温条件下的变形,变形温度为300~450℃。利用分形方法对石英颗粒边界的研究表明,发生动态重结晶的石英颗粒边界具有统计学意义上的自相似性和明显的分形特征,亚颗粒旋转重结晶石英颗粒分维数介于1. 260~1. 319之间,均值1. 276;膨凸重结晶石英颗粒的分维数为1. 217~1. 297,均值为1. 256;根据石英粒径估算出亚颗粒旋转重结晶和膨凸重结晶作用变形阶段的古差异应力,分别为7. 84~21. 58MPa和18. 51~56. 65 MPa;基于分维值计算的应变速率计算公式,获得亚颗粒旋转与膨凸重结晶石英颗粒的应变速率分别为10-8. 4~10-7. 7s-1、10-10. 5~10-9. 7s-1;基于石英流变率计算,亚颗粒旋转重结晶的石英应变速率介于10-12. 88~10-11. 73s-1之间,膨凸重结晶的为10-13. 72~10-12. 46s-1。本地区韧性变形的应变速率大于一般性韧性剪切带应变速率,可能与拆离断层带的快速拆离伸展作用有关。

关 键 词:动态重结晶  分形  应变速率  古差应力  五莲拆离断层带
收稿时间:2018-01-10
修稿时间:2018-07-10

Fractal Analysis of Dynamically Recrystallized Quartz Grains and Rheological Parameter Estimation of Wulian Detachment Fault Zone
SUN Yujie,NI Jinlong,SHI Xiaoxiao,GUO Ying.Fractal Analysis of Dynamically Recrystallized Quartz Grains and Rheological Parameter Estimation of Wulian Detachment Fault Zone[J].Geoscience——Journal of Graduate School,China University of Geosciences,2019,33(1):36-44.
Authors:SUN Yujie  NI Jinlong  SHI Xiaoxiao  GUO Ying
Institution:1. College of Geological Sciences and Engineering, Shandong University of Science and Technology, Qingdao, Shandong 266590, China2. Laboratory for Marine Mineral Resources, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong 266237, China3. School of Earth Sciences and Resources, China University of Geosciences, Beijing 100083, China4. Institute of Geology and Paleontology, Linyi University, Linyi, Shandong 276000,China
Abstract:Distinct ductile deformation features are developed in the quartz grains of the Wulian detachment fault zone, which displays the ribbon or wire shape in the field and multi-grain quartz ribbons, subgrain rotation (SR) and bulging recrystallization (BLG) under the microscope. This indicates that the detachment fault zone was developed under medium-low temperatures, approximately 300 ℃ to 450 ℃. Fractal analysis shows that the boundaries of both SR and BLG recrystallized grains are statistically self-similar, with the fractal dimension values of 1.260-1.319 (avg. 1.276) and 1.217-1.297 (avg. 1.256), respectively. The paleo-stress values estimated from the SR and BLG recrystallized quartz grains are 7.84-21.58 MPa and 18.51-56.65 MPa, respectively. The strain rate results of ductile deformation by SR and BLG are different from each other. Values based on the fractal analysis are 10-8.4-10-7.7 s-1 and 10-10.5-10-9.7 s-1. According to the quartz rheology law method, the SR and BLG values are estimated to be 10-12.88-10-11.73 s-1 and 10-13.72-10-12.46 s-1. The strain rate results deduced from the method is slightly higher than those of most general ductile zones, which may be related to a rapid extensional detachment of the Wulian fault zone.
Keywords:dynamic recrystallization  fractal  strain rate  paleo-stress  Wulian detachment fault zone  
本文献已被 CNKI 维普 等数据库收录!
点击此处可从《现代地质》浏览原始摘要信息
点击此处可从《现代地质》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号