首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Fragmentation processes and xenolith transport in a Proterozoic minette dyke,Grenville Province,Québec
Authors:D Morin  Louise Corriveau
Institution:(1) Centre géoscientifique de Québec, INRS-Géoressources, C.P. 7500, Québec, QC, Canada, G1V 4C7, CA;(2) Centre géoscientifique de Québec, Commission géologique du Canada, C.P. 7500, Québec, QC, Canada, G1V 4C7, CA
Abstract: The Mesoproterozoic Rivard minette dyke provides a case example of dyke-parallel fracturing induced by propagation of low-viscosity melts at deep crustal levels. The dyke constitutes a xenolith-choked intrusion breccia and provides samples of an extensive section of the lithosphere underlying the southwestern Grenville Province of Québec at 1.08 Ga. The xenoliths occupy approximately 50% of the volume of the breccia. They are extremely diverse and include pyroxenites and mafic granulites from the upper mantle and lower crust, and Grenvillian gabbroids, gneisses and quartzites. Wall-rock fragments are detached to various extents along dyke-parallel fractures and apophyses. The host lamprophyre magma has a calculated viscosity of ca. 40 Pa·s. Rapid ascent of magma and turbulence are suggested by the presence of large dense fragments and the brittle-to-ductile deformation at the margins of some xenoliths. A minimum ascent velocity of ca. 50 cm·s–1 is estimated from the settling velocity of a 40 cm long pyroxenite xenolith. The progressive addition of xenoliths increased the effective viscosity of the liquid-solid mixture to 103 Pa·s during emplacement. This favoured Bingham behaviour and laminar flow of the magma, and xenolith suspension. Field evidence suggests that xenoliths were formed through (1) early fracturing of wall rock by inelastic deformation during dyke propagation, and (2) continuous delamination of wall rock by intrusion of magma along the dyke-parallel fractures. This led to removal of chilled margins, and to fluid infiltration, partial melting and microbrecciation in the wall rock. Pre-existing discontinuities played a minor role in the fracturing process. Xenoliths may thus be abundant in alkaline magmas not only because these magmas ascend rapidly and can transport xenoliths, but possibly also, because their low viscosities promote intense fracturing of wall rock. Received: 10 June 1995 / Accepted: 10 February 1996
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号