首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Gully erosion reduces carbon and nitrogen storage and mineralization fluxes in a headwater catchment of south‐eastern Queensland,Australia
Authors:Alexandra Garzon‐Garcia  Jon M Olley  Stuart E Bunn  Philip Moody
Institution:1. Australian Rivers Institute, Griffith University, Brisbane, QLD, Australia;2. Department of Science, Information Technology, Innovation and Arts (DSITIA), Ecosciences Precinct, Brisbane, QLD, Australia
Abstract:Increased erosion associated with land use change often alters the flux of sediments and nutrients, but few studies have looked at the interaction between these disrupted cycles. We studied the effects of gully erosion on carbon and nitrogen storage in surface soil/sediment and herbaceous vegetation and on C and N mineralization in a headwater catchment used for cattle grazing. We found significantly lower C and N stored in an incising gully compared with an intact valley. This storage was significantly higher in an adjacent stabilizing gully, although not to the levels found in the intact valley. The intact valley had two to four times higher soil/sediment concentrations of total organic C, total N and Colwell extractable P than the incising gully. Lower storage was not explained by differences in vegetation biomass density or silt and clay content. Vegetation accounted for only 8% of C and 2% of N storage. Although not a significant store in itself, vegetation has an important indirect role in restoring and maintaining soil/sediment C and N stocks in eroding areas. We found significant linear relationships between C and N mineralization rates and soil/sediment C and N content, with lower rates occurring in the eroded sediment. These findings support our initial hypothesis that gully erosion reduces C and N storage and mineralization rates in eroding catchments. The implications of this study include a change to the quality of eroded sediments in headwater catchments, causing C‐poorer and N‐poorer sediments to be exported but overall loads to increase. Copyright © 2013 John Wiley & Sons, Ltd.
Keywords:sediment  carbon  nitrogen  nutrient cycling  riparian  streams  cattle grazing
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号