首页 | 本学科首页   官方微博 | 高级检索  
     检索      


EXPLORATION OF BURUNDI NICKELIFEROUS LATERITES BY ELECTRICAL METHODS*
Authors:M PERIC
Abstract:The laterites in Burundi, which are formed by weathering of ultrabasic rocks, show a complete profile with the following horizons: canga, the ferruginous crust capping, ferralite, consisting essentially of iron hydroxides, and saprolite, which contains a large quantity of hydrosilicate minerals. Nickel bearing minerals occur in the saprolite and the lower portion of ferralite. Resistivity well-logging and resistivity sounding indicated that the electrical properties of rocks depend upon their composition: Canga and ferralite showed high resistivities of 6,500 Ωm and 800 Ωm, respectively. The resistivity of saprolite was found to be much lower, between 10 Ωm and 20 Ωm. The laterite is underlain by resistive peridotite. The chargeability of saprolite was found to be lower than that of the upper horizons and the bedrock. Electrolytic conductivity of laterite, which depends on the geometry of the deposit, was found to be low, because the laterite contains moisture and ground water, which are highly resistive. The relatively high conductivity of saprolite is caused by nickeliferous hydrosilicates, which exhibit the electrical properties of clay minerals, with an apparent maximum conductivity of 0.25 S/m. The conductivity of saprolite corresponds to a concentration between 30% and 50% of conductive silicate minerals distributed in the pore space of deposit. A nickel enrichment of up to 6% was estimated from the resistivity of the saprolite. Prospecting for laterites by electrical sounding showed that the development of laterite horizons in a nickel deposit correlates with the surface morphology of weathered ultrabasic massif. Thus the method can be used in preliminary exploration of such deposits.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号