首页 | 本学科首页   官方微博 | 高级检索  
     检索      


DEM simulation on soil creep and associated evolution of pore characteristics
Institution:1. Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China;2. Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), 1119 Haibin Rd., Nansha District, Guangzhou, China
Abstract:In this study, numerical simulations using the discrete element method (DEM) were performed to examine the evolution of pore characteristics in dense and loose samples subjected to a biaxial creep test. Sliding creep between particle contacts was incorporated in the DEM simulations, which displayed similar creep behavior found in experiments. The irregularly shaped pore geometry in the soil packing was quantified with a best-fitting ellipse with the aid of the region-based method. It has been found that the initial density of soils and the deviatoric stress values under which creep starts determine unique evolution of pore space. In addition, the weak pore structures, elongated along the horizontal direction (or perpendicular to the axial loading), collapse first and ultimately only those stable pore structures, elongated along the vertical direction (or parallel to the axial loading direction), survive and then dominate the entire soil structures as creep proceeds. The pore characteristics at last become more uniform and homogenized throughout the sample, and a more stable particle arching elongated along the loading direction is gradually produced during creep.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号