首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Separation of mass signals within GRACE monthly gravity field models by means of empirical orthogonal functions
Institution:1. Space and Aviation Research Institute, King Abdulaziz City for Science and Technology (KACST), Riyadh, Saudi Arabia;2. Institute of Geodesy and Geoinformation (IGG), University of Bonn, Germany;3. National Research Institute of Astronomy and Geophysics (NRIAG), Helwan, Cairo, Egypt
Abstract:Since 2002 the two GRACE satellites observe the time varying gravity signal mainly caused by the sum of mass variations within the Earth subsystems ocean, atmosphere, and continental hydrosphere. It is a challenging problem to separate the integral GRACE signal and to identify and quantify the mass variations of the individual subsystems. This work proves first by a closed loop simulation that such a decomposition is successful by means of empirical orthogonal functions (EOF) derived from geophysical models and a least-squares adjustment with a multivariate Gauss–Markov model with time coefficients parameterized. The geophysical models are used to synthesize GRACE observations which are subsequently separated leading to time coefficients coinciding with those of the predefined models. In a second step the separation is performed with real, unfiltered time series of 5 years of monthly GRACE gravity field models (with atmospheric and oceanic background models reconstructed) and a limited number of EOFs. The reconstructed time coefficients are in good agreement with the original ones and exhibit high correlations (0.70 for ocean, 0.91 for atmosphere and 0.93 for continental hydrosphere). Analysis of GRACE residuals and the correlation among the time coefficients substantiate a successful identification.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号