首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Diffusion Gradients in an Eclogite Xenolith from the Roberts Victor Kimberlite Pipe: 1. Mechanism and Evolution of Garnet Exsolution in Al2O3-rich Clinopyroxene
Authors:SAUTTER  VIOLAINE; HARTE  BEN
Institution:1Laboratoire de G?ophysique et G?odynamique Interne, Universit? Paris-Sud Batiment 510, 91405 Orsay Cedex, France
2Grant Institute of Geology, University of Edinburgh West Mains Road, Edinburgh EH9 3J W, Scotland
Abstract:Xenolith JJG41 is from the Roberts Victor kimberlite and isa bimineralic eclogite which is striking for its Al- and Ca-richclinopyroxene crystals showing garnet exsolution lamellae. Thedevelopment of the exsolution has been interpreted as a resultof a slow cooling at depth from near-solidus conditions (c.1400?C) towards normal mantle lithosphere temperatures (Harte& Gurney, 1975). The clinopyroxene retains marked compositionalgradients adjacent to the garnet lamellae and the present paperis concerned with the generation and preservation of these diffusiongradients within a rock from the Earth's mantle In order to understand the mechanism of exsolution reactiona re-examination has been made of the microtexture and chemistryof the garnet lamellae in relation to the compositional gradientsin adjacent clinopyroxene. Three sets of garnet lamellae, whichappear to have crystallized in sequence, may be recognised:type A, large lamellae, nucleated first and closest to the transformationtemperature; type B of intermediate size and age; and type C,small lamellae, nucleated last and with the greatest overstepof the transformation temperature. The major compositional zoning in JJG41 clinopyroxene, a decreaseof Al as Si and Mg increase, is consistent with the garnet growthreaction 2Diop+Al2Si–1Mg–1=2Gros, 1Py.Ca, unlikemost of the elements, shows very flat composition profiles,but with a higher concentration than the initial Ca contentof the unexsolved clinopyroxene. Garnet lamellae are individuallyhomogeneous, but Ca contents vary between lamellae as a functionof lamellae size. In contrast the Fe/Mg distribution coefficientsat interfaces between garnet and clinopyroxene are relativelyconstant irrespective of garnet size. The redistribution of the principal cations—Ca, Fe, Mg,Al, Si—between and within the clinopyrox ene and garnet,during garnet exsolution and cooling, obviously proceeded differentlyfor different elements. Two principal stages in the coolinghistory may be identified: (1) The growth of the sets of garnetlamellae controlled by Al2Mg–1Si–1 redistributionin clinopyroxene. This redistribution was both part of the nettransfer reaction creating garnet, and an exchange reactionin clinopyroxene essential for the diffusional transport ofAl to the growing garnet. Al diffusion in clinopyroxene wasprobably the rate-limiting step, and all other cations, Ca andFe as well as Mg and Si, were mobile during this stage. (2)The occurrence, after the cessation of garnet growth, of diffusionof Fe, Mg and Ca in garnet and interdiffusion of Fe-Mg in clinopyroxene.This resulted in the setting of the KD Fe-Mg at the Cpx-Gt interfacesto a roughly constant value equivalent to approximately 1000?C,which is taken to be the final (‘freezing-in’) temperaturefor redistribution of any elements. During this post garnet-growthstage Ca also became homogenized within individual garnet lamellae,but there is no evidence of Ca equilibration with the clinopyroxene.Under the P-T conditions operating, the initial clinopyroxenecomposition probably resulted in a maximum (M2 site fully occupied)Ca content in clinopyroxene during the stage of garnet growth,and this was maintained during the post-growth stage.
Keywords:
本文献已被 Oxford 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号