首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Expected changes in future agro-climatological conditions in Northeast Thailand and their differences between general circulation models
Authors:Yoshimitsu Masaki  Yasushi Ishigooka  Tsuneo Kuwagata  Shinkichi Goto  Shinji Sawano  Toshihiro Hasegawa
Institution:1. National Institute for Agro-Environmental Sciences, 3-1-3, Kannondai, Tsukuba, Ibaraki, 305-8604, Japan
Abstract:We have studied future changes in the atmospheric and hydrological environments in Northeast Thailand from the viewpoint of risk assessment of future cultural environments in crop fields. To obtain robust and reliable estimation for future climate, ten general circulation models under three warming scenarios, B1, A1B, and A2, were used in this study. The obtained change trends show that daily maximum air temperature and precipitation will increase by 2.6°C and 4.0%, respectively, whereas soil moisture will decrease by c.a. 1% point in volumetric water content at the end of this century under the A1B scenario. Seasonal contrasts in precipitation will intensify: precipitation increases in the rainy season and precipitation decreases in the dry season. Soil moisture will slightly decrease almost throughout the year. Despite a homogeneous increase in the air temperature over Northeast Thailand, a future decrease in soil water content will show a geographically inhomogeneous distribution: Soil will experience a relative larger decrease in wetness at a shallow depth on the Khorat plateau than in the surrounding mountainous area, reflecting vegetation cover and soil texture. The predicted increase in air temperature is relatively consistent between general circulation models. In contrast, relatively large intermodel differences in precipitation, especially in long-term trends, produce unwanted bias errors in the estimation of other hydrological elements, such as soil moisture and evaporation, and cause uncertainties in projection of the agro-climatological environment. Offline hydrological simulation with a wide precipitation range is one strategy to compensate for such uncertainties and to obtain reliable risk assessment of future cultural conditions in rainfed paddy fields in Northeast Thailand.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号