首页 | 本学科首页   官方微博 | 高级检索  
     检索      


The influence of vegetation and building morphology on shadow patterns and mean radiant temperatures in urban areas: model development and evaluation
Authors:Fredrik Lindberg  C S B Grimmond
Institution:1. Environmental Monitoring and Modelling Group, Department of Geography, King??s College London, Strand, London, WC2R 2LS, UK
2. Department of Earth Sciences, University of Gothenburg, Box?460, Gothenburg, SE-405 30, Sweden
Abstract:The solar and longwave environmental irradiance geometry (SOLWEIG) model simulates spatial variations of 3-D radiation fluxes and mean radiant temperature (T mrt) as well as shadow patterns in complex urban settings. In this paper, a new vegetation scheme is included in SOLWEIG and evaluated. The new shadow casting algorithm for complex vegetation structures makes it possible to obtain continuous images of shadow patterns and sky view factors taking both buildings and vegetation into account. For the calculation of 3-D radiation fluxes and T mrt, SOLWEIG only requires a limited number of inputs, such as global shortwave radiation, air temperature, relative humidity, geographical information (latitude, longitude and elevation) and urban geometry represented by high-resolution ground and building digital elevation models (DEM). Trees and bushes are represented by separate DEMs. The model is evaluated using 5?days of integral radiation measurements at two sites within a square surrounded by low-rise buildings and vegetation in G?teborg, Sweden (57°N). There is good agreement between modelled and observed values of T mrt, with an overall correspondence of R 2?=?0.91 (p?<?0.01, RMSE?=?3.1?K). A small overestimation of T mrt is found at locations shadowed by vegetation. Given this good performance a number of suggestions for future development are identified for applications which include for human comfort, building design, planning and evaluation of instrument exposure.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号