首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Steady heat conduction in coronal loop unstable against plasma instability
Authors:T Takakura
Institution:(1) Department of Astronomy, University of Tokyo, Bunkyo-ku, 113 Tokyo, Japan
Abstract:The Fokker-Planck equation is numerically solved to study the electron velocity distribution under steady heat conduction with an applied axial electric current in a model coronal loop.If the loop temperature is so high that the electron mean-free path is longer than the local temperature scale height along the loop, a velocity hump appears at about the local thermal electron velocity. The hump is attributed to cooler electrons moving up the temperature gradient to compensate for the runaway electrons moving down the gradient. If the ratio between the mean free path and temperature scale height is greater than about 2, negative absorption for the plasma waves can appear (waves grow). This effect is enhanced by the presence of axial electric current in the half of the coronal loop in which the electrons carrying the current are drifting up the temperature gradient. Thus, the plasma instability may occur in the coronal elementary magnetic flux tubes. Although the present paper is limited to show the critical condition and linear growth rate of the instability, the following scenarios may be inferred.If the flux tubes change from marginally stable to unstable against the plasma instability, due to an increase in the loop temperature, anomalous resistivity may suddenly appear because of the growth of plasma waves. Then a high axial electric field is induced that may accelerate particles. This could be the onset of impulsive loop flares.For a low electric current, if the loop temperature is sufficiently high to give the negative absorption for the plasma waves in a large part of the coronal loop, steady plasma turbulence may originate. This could be a source for the type I radio noise storm.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号