首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Ilmenite, magnetite, and peraluminous Mesoproterozoic anorogenic granites of Laurentia and Baltica
Authors:J Lawford Anderson  Jean Morrison
Institution:

Department of Earth Sciences, University of Southern California, Los Angeles, CA 90089-0040, USA

Abstract:Emplacement of 1.6 to 1.3 Ga Mesoproterozoic plutons in Baltica and Laurentia formed an immense belt of A-type granite batholiths that include (1) low-fO2, ilmenite-series granite intrusions from the Baltic region to Wyoming, (2) high-fO2, magnetite-series granite intrusions of the central to southwestern U.S., and (3) peraluminous, two-mica granite intrusions from Colorado to central Arizona. These mineralogic divisions are mirrored by substantial elemental and oxygen isotopic differences. The ilmenite-series granites, which often contain classic rapakivi textures, have the highest Fe/Mg ratios and are highest in LIL element enrichment. They also have the lowest whole-rock δ18O values at 5.7‰ to 7.7‰. The magnetite-series granites are less potassic, less LILE-enriched, and have higher whole-rock δ18O values, ranging from 7.6‰ to 10.8‰. Although they retain A-type characteristics, the peraluminous granites are the least LILE-enriched and have the lowest Fe/Mg ratios. They also have the highest whole-rock δ18O values ranging from 8.8‰ to 12.0‰. Feldspar, where strongly reddened, can exhibit elevated δ18O values, which is interpreted to indicate subsolidus exchange with surface-derived aqueous fluids. Quartz δ18O values are interpreted to generally retain their magmatic values. The transcontinental mineralogic, chemical, and oxygen isotopic variations are interpreted as indicative of broad changes in the composition of a lower crustal source, which is compatible with a reduced mantle-derived crustal source for the ilmenite-series granites and a more oxidized crustal source for the others, including a metasedimentary component in the source for the two-mica granite subprovince.

Widespread thermal metamorphism at not, vert, similar1.4 Ga is present throughout much of the magmatic province and is viewed as a consequence of this immense event. Compressional deformation associated with several western 1.4 Ga Laurentia granite batholiths, alternatively interpreted as the distal expressions of a presumed 1.4 Ga orogeny, have at least in part been shown to be localized on preexisting Paleoproterozoic zones of deformation. Thus, we do not find compelling evidence for a not, vert, similar1.4 Ga orogeny related to the formation of most of these granites. Renewed intrusions at not, vert, similar1.0–1.1 Ga between and immediately following phases of the Grenville orogeny indicate that situations leading to their formation need to be more broadly considered.

The origin of this red granite-forming event in Laurentia and Baltica is considered as part of a global magmatic event that was coeval with intrusion of massif anorthosites and associated charnockites. Most are viewed as anorogenic, but it is recognized that the same conditions leading to their formation may have occurred during extensional phases of orogens. The immense volumes of red granites produced are also essentially unique to the Mesoproterozoic and appear to be tied to the stabilization and eventual break up of supercontinents of both Paleoproterozoic and Mesoproterozoic age.

Keywords:Mesoproterozoic  Granite  Anorogenic  Oxygen fugacity  Oxygen isotope
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号