首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Mechanism of aluminum release from variable charge soils induced by low-molecular-weight organic acids: Kinetic study
Authors:Jiuyu Li  Renkou Xu  Diwakar Tiwari
Institution:a Institute of Soil Science, Chinese Academy of Sciences, P.O. Box 821, Nanjing, China
b Graduate University of Chinese Academy of Sciences, Beijing 100039, China
c Department of Chemistry, National Institute of Technology, Jamshedpur 831 014, India
Abstract:The kinetic curves of aluminum release from two variable charge soils and a kaolinite within 48 h can be divided into three stages: the first stage located within the initial 30 min, at which the release rate of Al was the fastest one and the released Al dominantly originated from exchangeable Al and amorphous Al pools. The Elovich equation fit the kinetics data at this stage fairly well. The moderate and the slow stages occurred within 0.5-2 and 2-48 h, respectively. During these two stages, the released Al was mainly attributed to Al oxides, poorly crystalline kaolinite and easily weathered hydrous mica. The different linear equations also fit the kinetics data at these two stages well. The rate of Al release decreased sharply with time during the fast stage, but the rate remained constant during the moderate and slow stages. In Ultisol, Al oxides were the more important pool for Al release than poorly crystalline kaolinite and easily weathered hydrous mica during the latter two stages. In Oxisol, poorly crystalline kaolinite was the more important Al pool. Compared to the control system, the presence of organic acids increased the rate and quantity of Al release from variable charge soils. The ability of organic acids to accelerate Al release followed the order: oxalic acid > citric acid > malic acid > lactic acid. This is generally in consistent with the magnitude of the stability constants of the Al-organic complexes. The release rate of Al also increased with the rise in concentration of organic acids.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号