首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Effect of hydrogen limitation and temperature on the fractionation of sulfur isotopes by a deep-sea hydrothermal vent sulfate-reducing bacterium
Authors:Joost Hoek  Anna-Louise Reysenbach  Donald E Canfield
Institution:a Department of Earth and Environmental Science, University of Pennsylvania, Philadelphia, PA 19104, USA
b Department of Biology, Portland State University, Portland, OR 97201, USA
c Nordic Center for Earth Evolution (NordCEE) and Institute of Biology, University of Southern Denmark, Odense, Denmark
Abstract:The fractionation of sulfur isotopes by the thermophilic chemolithoautotrophic Thermodesulfatator indicus was explored during sulfate reduction under excess and reduced hydrogen supply, and the full temperature range of growth (40-80 °C). Fractionation of sulfur isotopes measured under reduced H2 conditions in a fed-batch culture revealed high fractionations (24-37‰) compared to fractionations produced under excess H2 supply (1-6‰). Higher fractionations correlated with lower sulfate reduction rates. Such high fractionations have never been reported for growth on H2. For temperature-dependant fractionation experiments cell-specific rates of sulfate reduction increased with increasing temperatures to 70 °C after which sulfate-reduction rates rapidly decreased. Fractionations were relatively high at 40 °C and decreased with increasing temperature from 40-60 °C. Above 60 °C, fractionation trends switched and increased again with increasing temperatures. These temperature-dependant fractionation trends have not previously been reported for growth on H2 and are not predicted by a generally accepted fractionation model for sulfate reduction, where fractionations are controlled as a function of temperature, by the balance of the exchange of sulfate across the cell membrane, and enzymatic reduction rates of sulfate. Our results are reproduced with a model where fractionation is controlled by differences in the temperature response of enzyme reaction rates and the exchange of sulfate in and out of the cell.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号