首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Simulation of stream flow components in a mountainous catchment in northern Thailand with SWAT,using the ANSELM calibration approach
Authors:M A Bannwarth  C Hugenschmidt  W Sangchan  M Lamers  J Ingwersen  A D Ziegler  T Streck
Institution:1. Institute of Soil Science and Land Evaluation, Biogeophysics Section, University of Hohenheim, Stuttgart, Germany;2. Department of Geography, National University of Singapore, Singapore, Singapore
Abstract:Highland agriculture is intensifying rapidly in South‐East Asia, leading to alarmingly high applications of agrochemicals. Understanding the fate of these contaminants requires carefully planned monitoring programmes and, in most cases, accurate simulation of hydrological pathways into and through water bodies. We simulate run‐off in a steep mountainous catchment in tropical South‐East Asia. To overcome calibration difficulties related to the mountainous topography, we introduce a new calibration method, named A Nash–Sutcliffe Efficiency Likelihood Match (ANSELM), that allows the assignment of optimal parameters to different hydrological response units in simulations of stream discharge with the Soil and Water Assessment Tool (SWAT) hydrological model. ANSELM performed better than the Parasol calibration tool built into SWAT in terms of model efficiency and computation time. In our simulation, the most sensitive model parameters were those related to base flow generation, surface run‐off generation, flow routing and soil moisture change. The coupling of SWAT with ANSELM yielded reasonable simulations of both wet‐season and dry‐season storm hydrographs. Nash–Sutcliffe model efficiencies for daily stream flow during two validation years were 0.77 and 0.87. These values are in the upper range or even higher than those reported for other SWAT model applications in temperate or tropical regions. The different flow components were realistically simulated by SWAT, and showed a similar behaviour in all the study years, despite inter‐annual climatic differences. The realistic partitioning of total stream flow into its contributing components will be an important factor for using this hydrological model to simulate solute transport in the future. Copyright © 2014 John Wiley & Sons, Ltd.
Keywords:hydrologic response simulation  tropical monsoon catchment  Mae Sa  model calibration  ANSELM
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号