首页 | 本学科首页   官方微博 | 高级检索  
     检索      


A quenched carbonaceous composite (QCC) grain model for the interstellar 220 NM extinction hump
Authors:Onaka  T  Nakada  Y  Tanabe  T  Sakata  A  Wada  S
Institution:(1) Department of Astronomy, Faculty of Science, University of Tokyo, Bunkyo-ku, Tokyo, Japan;(2) Laboratory of Applied Science, University of Electro-Communications, Chofu, Tokyo, Japan;(3) Laboratory of Chemistry, University of Electro-Communications, Chofu, Tokyo, Japan
Abstract:The dependence of the wavelength of peak absorption of dust grains on the grain size is investigated analytically by using an oscillator model for the absorption band. The peak wavelength of a weak absorption band is much less sensitive to the grain size than that of a strong band. This is explained by the fact that the surface mode, which is excited in the strong absorption band, is not raised in the weak absorption band. A quenched carbonaceous composite (QCC) synthesized from hydrocarbon plasma is found to have a weak absorption band at 220 nm. The absorption peak wavelength of the QCC grains falls well in the range of 217±7 nm even if the grain size runs from 5 to 100 nm. This is compatible with the observed constancy of the 220 nm hump (217±5 nm). By contrast, the absorption peak of graphite grains, which have a strong band around 280 nm and have been investigated as candidates for the hump, is very sensitive to the grain size. A quite narrow range of the grain size is required to account for the observed 220 nm feature. A weak absorption model, such as the QCC grains, is suggested to be a more likely candidate for the 220 nm extinction hump than a strong absorption model, such as graphite grains.Paper presented at the IAU Third Asian-Pacific Regional Meeting, held in Kyoto, Japan, between 30 September–6 October, 1984.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号