首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Reflection and Transmission Coefficients for an Incident Plane Shear Wave at an Interface Separating Two Dissimilar Poroelastic Solids
Authors:Xu Liu  Stewart Greenhalgh
Institution:1. Department of Geology and Geophysics, University of Adelaide, Adelaide, 5005, Australia
2. Institute of Geophysics, ETH Zurich, Sonneggstrasse 5, 8092, Zurich, Switzerland
Abstract:Using Biot’s poroelasticity theory, we derive expressions for the reflection and transmission coefficients for a plane shear wave incident on an interface separating two different poroelastic solids. The coefficients are formulated as a function of the wave incidence angle, frequency and rock properties. Specific cases calculated include the boundary between water-saturated sand and water-saturated sandstone and the gas–water interface in sand. The results show a very different interface response to that of an incident P wave. Plane SV wave incidence does not significantly excite the Biot slow P wave if the frequency of the wave is below the transition frequency. Above this frequency, an incident plane SV wave can generate a mode-converted slow Biot P wave which is actually a normal propagating wave and not highly attenuating as in the usual (diffusive) case. For an incident SV wave onto a gas–water interface, even at very high frequency, there is no significant Biot second P wave produced. For small incident angles, the gas–water interface is essentially transparent. With increasing angles, there can arise an unusual "definitive angle" in the reflection/transmission coefficient curves which is related to the change of fluid viscosity on both sides of the interface and provides a possible new means for underground fluid assessment.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号