首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Cementation effects in two lacustrine clayey soils
Authors:Alberto Burghignoli  Salvatore Miliziano  Fabio M Soccodato
Institution:(1) Department of Structural and Geotechnical Engineering, University of Rome “La Sapienza”, via Eudossiana 45, 00184 Rome, Italy;(2) Department of GeoEngineering and Environmental Technologies, University of Cagliari, Piazza d’Armi, 09123 Cagliari, Italy
Abstract:This paper describes the main findings of a laboratory study on the mechanical behaviour of cemented geologically normally consolidated lacustrine clayey soils from two sites, Bacinetto (BA) and Avezzano (AZ), in the Fucino basin (Italy). One-dimensional and triaxial compression tests were carried out in order to investigate the effects of the presence and of the progressive degradation of the interparticle cementation bonds. The two tested soils showed quite different physical and mechanical properties, the more apparent ones being plasticity and yield stress values. The experimental results allowed the gross yield curves and the critical state conditions to be identified for both soils (BA clay and AZ silt). A number of typical features generally exhibited by cemented soils were clearly apparent: yield stresses greater than the in situ stress states, both soils being geologically normally consolidated; high values of compressibility index after yielding, which gradually reduce with increasingly applied stresses; strength reductions associated with a globally contractive behaviour. A convenient normalisation of the experimental results, in which the critical state conditions are assumed as a reference state, allowed the effects of cementation bonds and of their progressive degradation to be highlighted. In particular, BA samples were found to be characterised by different structures related to different degrees of cementation. Furthermore, despite the larger values of the yielding stresses exhibited by AZ silt, stronger effects of cementation are apparent in BA soil. Experimental results seem to indicate that at high values of the applied stress and strain paths, when bonds are largely damaged, the structures of the natural and parent reconstituted BA soil continue to be different.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号