首页 | 本学科首页   官方微博 | 高级检索  
     检索      


53Mn-53Cr evolution of the early solar system
Institution:1. Steinmann-Institut für Geologie, Mineralogie un Paläontologie, Rheinische Friedrich-Wilhelms-Universität Bonn, 53115 Bonn, Germany;2. Institut für Geologie und Mineralogie, Universität zu Köln, 50939 Köln, Germany
Abstract:The model of Cr isotopic evolution presented here, relies on the relative volatility properties of the two elements: Mn-Cr in planetary formation processes. The Mn/Cr ratio of the respective parent bodies correlate in most cases with the K/U ratio. With the exception of Allende inclusions, the 53Mn/55Mn and 53Cr/52Cr isotopic ratios were homogeneous in the solar nebula. The Cr isotopic evolution of the bulk solar system corresponds to the C1 carbonaceous chondrites. In this figure the Earth is isolated within a few million years of the C1 formation, from the solar nebula before complete decay of 53Mn. It has a Cr isotopic composition which is depleted in 53Cr with respect to the solar system as a whole. The parent bodies of the different meteorite classes display various behaviour with no case of Mn enrichment relative to Cr when compared to C1. The 53Mn-53Cr isotopic system is a precise tool for the exploration of the early solar sytem history, bringing constraints both on time and processes in this phase of the evolution where the face of the planetary system was changing rapidly. The chronology deduced from Mn-Cr systematics, is generally in good agreement with other chronometers.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号