首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Effect of hydroxamate siderophores on Fe release and Pb(II) adsorption by goethite
Institution:1. Cardiac Surgery and Heart Transplantation Unit, Department for the Treatment and Study of Cardiothoracic Diseases and Cardiothoracic Transplantation, Mediterranean Institute for Transplantation and Advanced Specialized Therapies (ISMETT), Palermo, Italy;2. Cardiology Unit, Department for the Treatment and Study of Cardiothoracic Diseases and Cardiothoracic Transplantation, Mediterranean Institute for Transplantation and Advanced Specialized Therapies (ISMETT), Palermo, Italy;3. Statistical Office, Mediterranean Institute for Transplantation and Advanced Specialized Therapies (ISMETT), Palermo, Italy;4. Management Control and Decision Support, University of Pittsburgh Medical Center Italy (UPMC Italy), Palermo, Italy
Abstract:Hydroxamate siderophores are biologically-synthesized, Fe(III)-specific ligands which are common in soil environments. In this paper, we report an investigation of their adsorption by the iron oxyhydroxide, goethite; their influence on goethite dissolution kinetics; and their ability to affect Pb(II) adsorption by the goethite surface. The siderophores used were desferrioxamine B (DFO-B), a fungal siderophore, and desferrioxamine D1, an acetyl derivative of DFO-B (DFO-D1). Siderophore adsorption isotherms yielded maximum surface concentrations of 1.5 (DFO-B) or 3.5 (DFO-D1) μmol/g at pH 6.6, whereas adsorption envelopes showed either cation-like (DFO-B) or ligand-like (DFO-D1) behavior. Above pH 8, the adsorbed concentrations of both siderophores were similar. The dissolution rate of goethite in the presence of 240 μM DFO-B or DFO-D1 was 0.02 or 0.17 μmol/g hr, respectively. Comparison of these results with related literature data on the reactions between goethite and acetohydroxamic acid, a monohydroxamate ligand, suggested that the three hydroxamate groups in DFO-D1 coordinate to Fe(III) surface sites relatively independently. The results also demonstrated a significant depleting effect of 240 μM DFO-B or DFO-D1 on Pb(II) adsorption by goethite at pH > 6.5, but there was no effect of adsorbed Pb(II) on the goethite dissolution rate.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号