首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Mechanisms of iron oxide transformations in hydrothermal systems
Authors:Tsubasa Otake  David J Wesolowski  Lawrence F Allard
Institution:a NASA Astrobiology Institute & Department of Geosciences, The Pennsylvania State University, University Park, PA 16802, USA
b Oak Ridge National Laboratory, Oak Ridge, TN 37831-6110, USA
c Department of Earth and Planetary Sciences, University of Tennessee, Knoxville, TN 37996, USA
Abstract:Coexistence of magnetite and hematite in hydrothermal systems has often been used to constrain the redox potential of fluids, assuming that the redox equilibrium is attained among all minerals and aqueous species. However, as temperature decreases, disequilibrium mineral assemblages may occur due to the slow kinetics of reaction involving the minerals and fluids. In this study, we conducted a series of experiments in which hematite or magnetite was reacted with an acidic solution under H2-rich hydrothermal conditions (T = 100-250 °C, View the MathML source) to investigate the kinetics of redox and non-redox transformations between hematite and magnetite, and the mechanisms of iron oxide transformation under hydrothermal conditions. The formation of euhedral crystals of hematite in 150 and 200 °C experiments, in which magnetite was used as the starting material, indicates that non-redox transformation of magnetite to hematite occurred within 24 h. The chemical composition of the experimental solutions was controlled by the non-redox transformation between magnetite and hematite throughout the experiments. While solution compositions were controlled by the non-redox transformation in the first 3 days in a 250 °C experiment, reductive dissolution of magnetite became important after 5 days and affected the solution chemistry. At 100 °C, the presence of maghemite was indicated in the first 7 days. Based on these results, equilibrium constants of non-redox transformation between magnetite and hematite and those of non-redox transformation between magnetite and maghemite were calculated. Our results suggest that the redox transformation of hematite to magnetite occurs in the following steps: (1) reductive dissolution of hematite to View the MathML source and (2) non-redox transformation of hematite and View the MathML source to magnetite.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号