首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Solubility of Au in Cl- and S-bearing hydrous silicate melts
Authors:RE Botcharnikov  RL Linnen
Institution:a Institut für Mineralogie, Leibniz Universität Hannover, Callinstr. 3, D-30167 Hannover, Germany
b Department of Earth and Environmental Sciences, University of Waterloo, Waterloo, Ont., Canada N2L 3G1
Abstract:The solubility of Au in Cl- and S-bearing hydrous rhyodacitic and andesitic melts has been experimentally investigated at 1050 °C, 200 MPa and log fO2 close to the Ni/NiO solid oxygen buffer (NNO). The concentrations of Au in the experimental glasses have been determined using Laser Ablation ICP-MS (LA) with special efforts to avoid incorporation of Au micronuggets in the analysis. It is concluded that metal micronuggets are an experimental artefact and produced by Au partitioning into the fluids during heating with consequent precipitation on fluid dissolution in the melting glass powder. Hence, the micronuggets do not represent quench phases and must be excluded from the analysis. The micro-analytical data obtained by LA show that Au concentrations vary from ∼0.2 to ∼2.5 ppm by weight, generally consistent with the literature data for other melt compositions. The measured Au concentrations increase with increasing amounts of Cl and S dissolved in the silicate melt and show a correlation with the apparent activities of Cl and S in the system. The apparent activities of Cl and S are defined by the simplified linear relationship between volatile concentrations in the melt and activity of volatiles. The maximum activity (a = 1) is assumed to be reached at the saturation of the systems in respect of Cl-rich brine or FeS liquid for Cl and S, respectively. The dependence of Au solubility on the concentrations/activities of Cl and S at the fixed redox conditions shows that Au may form not only oxide- but also Cl- and S-bearing complexes in silicate melts. Furthermore, it indicates that exsolution of S and Cl from the melt by degassing/segregation/crystallization processes may lead to mobilization and extraction of Au into the fluid, liquid and/or mineral phase(s).
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号