首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Dissolution kinetics of diopside as a function of solution saturation state: Macroscopic measurements and implications for modeling of geological storage of CO2
Authors:Damien Daval  Roland Hellmann  Delphine Tisserand  François Guyot
Institution:a Institut de Physique du Globe de Paris, Centre de Recherches sur le Stockage Géologique du CO2, 4 Place Jussieu, 75005 Paris, France
b Laboratoire de Géologie, UMR 8538 du CNRS, École Normale Supérieure, 24 Rue Lhomond, 75005 Paris, France
c Géochimie de l’Environnement, Laboratoire de Géophysique Interne et Tectonophysique, CNRS UMR C5559, OSUG, Université Joseph Fourier, 38041, Grenoble Cedex 9, France
d Institut de Minéralogie et de Physique des Milieux Condensés, CNRS, Université Paris 6 et 7, 140 rue de Lourmel 75252, Paris, France
Abstract:Measurements of the dissolution rate of diopside (r) were carried out as a function of the Gibbs free energy of the dissolution reaction (ΔGr) in a continuously stirred flow-through reactor at 90 °C and pH90 °C = 5.05. The overall relation between r and ΔGr was determined over a free energy range of −130.9 < ΔGr < −47.0 kJ mo1−1. The data define a highly non-linear, sigmoidal relation between r and ΔGr. At far-from-equilibrium conditions (ΔGr ? −76.2 kJ mo1−1), a rate plateau is observed. In this free energy range, the rates of dissolution are constant, independent of Ca], Mg] and Si] concentrations, and independent of ΔGr. A sharp decrease of the dissolution rate (∼1 order of magnitude) occurs in the transition ΔGr region defined by −76.2 < ΔGr ? −61.5 kJ mo1−1. Dissolution closer to equilibrium (ΔGr > −61.5 kJ mo1−1) is characterised by a much weaker inverse dependence of the rates on ΔGr. Modeling the experimental rGr data with a simple classical transition state theory (TST) law as implemented in most available geochemical codes is found inappropriate. An evaluation of the consequences of the use of geochemical codes where the rGr relation is based on basic TST was carried out and applied to carbonation reactions of diopside, which, among other reactions with Ca- and Mg-bearing minerals, are considered as a promising process for the solid state sequestration of CO2 over long time spans. In order to take into account the actual experimental rGr relation in the geochemical code that we used, a new module has been developed. It reveals a dramatic overestimation of the carbonation rate when using a TST-based geochemical code. This points out that simulations of water-rock-CO2 interactions performed with classical geochemical codes should be evaluated with great caution.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号