首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Lunar photoelectron layer dynamics
Authors:Edward Walbridge
Institution:1. Dept. of Systems Engineering, University of Illinois, Chicago, Ill., USA
Abstract:Possible waves and oscillations in the lunar photoelectron layer (PEL) are investigated. The steady state PEL is reviewed as a basis for discussing PEL motions. Magnetic fields are neglected, so that there are four possible wave modes to consider. The propagation through the PEL of the two electromagnetic modes is discussed. Positive-ion waves, the third mode, are dismissed and plasma waves are considered at length. It is concluded that there are no propagating waves in the PEL other than electromagnetic. However, there is a type of oscillation which appears to be new and which may not be strongly damped. With these oscillations, termed flight-time oscillations, the height of the PEL fluctuates as does the electric field. These oscillations appear to be analogous to the height oscillations of the vertical jet of water in a city park water fountain. If flight-time oscillations are not much damped then it would be simplest to interpret them as plasma oscillations continually driven by the upwelling photoelectron stream. A possible laboratory investigation of these oscillations is discussed. For the surfaces of the Moon and the planet Mercury, the flight-time oscillation frequency,ω F, is found to be respectively ç 4 × 106 and ç 107 rad s?1. The PEL's of those surfaces may be in a state of continual vertical ‘quivering’ due to flight-time oscillations, or may be quiescent.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号