首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Evaluating crustal contamination in continental basalts: the isotopic composition of the Picture Gorge Basalt of the Columbia River Basalt Group
Authors:Alan D Brandon  Peter R Hooper  Gordon G Goles  Richard St J Lambert
Institution:(1) Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, 02139-4307 Cambridge, MA, USA;(2) Department of Geology, Washington State University, 99164 Pullman, WA, USA;(3) Department of Geosciences, University of Oregon, 97403-1272 Eugene, OR, USA;(4) Department of Geology, University of Alberta, T6G 2E3 Edmonton, Alberta, Canada
Abstract:Crustal contamination of basalts located in the western United States has been generally under-emphasized, and much of their isotopic variation has been ascribed to multiple and heterogeneous mantle sources. Basalts of the Miocene Columbia River Basalt Group in the Pacific Northwest have passed through crust ranging from Precambrian to Tertiary in age. These flows are voluminous, homogenous, and underwent rapid effusion, all of which are disadvantages for crustal contamination while en route to the surface. The Picture Gorge Basalt of the Columbia River Basalt Group erupted through Paleozoic and Mesozoic oceanic accreted terranes in central Oregon, and earlier studies on these basalts provided no isotopic evidence for crustal contamination. New Sr, Nd, Pb, and O isotopic data presented here indicate that the isotopic variation of the Picture Gorge Basalt is very small, 87Sr/86Sr=0.70307–0.70371, epsivNd=+7.7-+4.8, delta18O=+5.6±6.1, and 206Pb/204Pb=18.80–18.91. Evaluation of the Picture Gorge compositional variation supports a model where two isotopic components contributed to Picture Gorge Basalt genesis. The first component (C1) is reflected by low 87Sr/86Sr, high epsivNd, and nonradiogenic Pb isotopic compositions. Basalts with C1 isotopic compositions have large MgO, Ni, and Cr contents and mantle-like delta18O=+5.6. C1 basalts have enrichments in Ba coupled with depletions in Nb and Ta. These characteristics are best explained by derivation from a depleted mantle source which has undergone a recent enrichment by fluids coming from a subducted slab. This C1 mantle component is prevalent throughout the Pacific Northwest. The second isotopic component has higher 87Sr/ 86Sr and delta18O, lower epsivNd, and more radiogenic Pb isotopic compositions than C1. There is a correlation in the Picture Gorge data of Sr, Nd, and Pb isotopes with differentiation indicators such as decreasing Mg#, and increasing K2O/TiO2, Ba, Ba/Zr, Rb/Sr, La/Sm, and La/Yb. Phase equilibrium and mineralogical constraints indicate that these compositional characteristics were inherited in the Picture Gorge magmas at crustal pressures, and thus the second isotopic component is most likely crustal in origin. Mixing and open-system calculations can produce the isotopic composition of the most evolved Picture Gorge flows from the most primitive compositions by 8 to 21% contamination of isotopic compositions similar to accreted terrane crust found in the Pacific Northwest. Therefore, in spite of the disadvantages for crustal contamination and their narrow range in isotopic compositions, the process controlling isotopic variation within the Picture Gorge Basalt is primarily crustal contamination. We suggest that comprehensive analyses for basaltic suites and careful consideration of these data must be made to test for crustal contamination, before variation resulting from mantle heterogeneity can be assessed.Deceased
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号