首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Paleovegetation of marine isotope stages 4 and 3 in northern new zealand and the age of the widespread rotoehu tephra
Authors:Phil Shane  Anna Sandiford
Institution:1 Department of Geology, University of Auckland, Private Bag 92019, Auckland, New Zealand
Abstract:Paleolake sediment, constrained by tephrochronology, from Onepoto basin volcanic crater in Auckland, Northern New Zealand (36° 48′S), provides one of the few uninterrupted records of paleovegetation for marine oxygen isotope stages (MIS) 4 and 3 (76,000–26,000 yr B.P.) in the region. This period was characterized by cool temperate conifer-hardwood forest that lacked some of the warmer taxa typical of the Holocene. The period 64,400–60,500 yr B.P. was marked by opening of forest canopy and expansion of small trees and shrubs, and correlates to the thermal minima of MIS 4. However, the landscape was never as open as the forest-shrubland mosaic of the MIS 2. The beginning of MIS 3 (60,500–50,500 yr B.P.) was marked by the dramatic expansion and then decline of conifer-hardwood forest dominated by Dacrydium cupressinum, a species that prefers wetter conditions. This forest was succeeded by the typically montane Nothofagus at 50,500 yr B.P., corresponding to a thermal decline. Thus, MIS 3 began with an abrupt change to moist cool conditions that lasted about 5000 yr, followed by gradual cooling and dryer conditions. This supports some interpretations from other parts of the southwest Pacific region, that MIS 3 was a period of increased precipitation. The widespread and stratigraphically important Rotoehu tephra, erupted from Okataina Volcanic Centre, has been variously dated at 45,000–65,000 yr B.P. At Onepoto, sedimentation rate and paleovegetation reconstruction imply an age of c. 44,300 yr B.P. The tephra provides a correlation horizon in the marine and terrestrial realms during a period (MIS 3) difficult to date by radiometric methods.
Keywords:Marine oxygen isotope stage 3  New Zealand  Palynology  Tephra  Rotoehu  Paleoclimate
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号