首页 | 本学科首页   官方微博 | 高级检索  
     检索      


A comparison of metal attenuation in mine residue and overburden material from an abandoned copper mine
Institution:1. Department of Ocean, Earth, and Atmospheric Sciences, Old Dominion University, Norfolk, VA, USA;2. Department of Earth, Ocean, and Atmospheric Science, The Florida State University, Tallahassee, FL, USA;1. Dipartimento di Chimica, Unità ISTM, Università degli Studi di Milano, via C. Golgi, 19, 20133 Milano, Italy;2. Centro/Dept. de Física da Universidade do Minho, 4710-058 Braga, Portugal;1. Department of Chemistry, University of Helsinki, Helsinki, Finland;2. Posiva Oy, Eurajoki, Finland;3. Geosigma AB, Uppsala, Sweden
Abstract:The metal attenuation capacities of secondary acid mine water precipitates is dependent upon such factors as pH, ionic strength, the presence of competing ions, and tailings mineralogy. At the abandoned Spenceville Cu mine in Nevada County, California, approximately 6800 m3 of jarosite overburden and 28,000 m3 of hematite residue are potential sources of heavy metals loading to infiltrating surface waters. A column study was performed to assess the ability of the overburden and the residue to attenuate heavy metals from acidic mine drainage. The study information was needed as part of a remedial design for the abandoned mine, and was designed to simulate a worst-case scenario to examine the plausibility of backfilling a large open pit with the waste materials. Ten pore volumes of acidic mine drainage were allowed to pass through the materials, and the column effluents were analyzed for dissolved Fe, Al, Ca, Mg, Na, K, Mn, Cu, Zn, Pb and Ni using ICP-AES. The oxidation-reduction potential (Eh) was measured with a combination Ptsingle bondAg/AgCl electrode and also calculated from Fe(II) and Fe(III) measurements using the Nernst equation. Ion activities in solution and saturation index (SI) values for various solid phases were calculated using the geochemical speciation model MINTEQA2, and mineralogical compositions of fine (< 2 mm) and coarse ( > 2 mm) fractions were determined by XRD. Geochemical modeling of the column effluent compositions indicate that goethite, jarosite, jurbanite and gypsum are potential solid phases that may control metal solubilities in the column effluents. Excellent agreement was observed between the measured Eh values and those calculated from the activity ratio of Fe2+(aq) to Fe3+(aq). The large attenuation capacities for Cu and Zn exhibited by the jarosite overburden also suggest that solid solution substitution plays a large role in controlling metal concentrations in the pore waters. Relatively little metal attenuation, however, was provided by the hematite residue.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号